Reverse deterrence in racial profiling:

Increased transgressions by the non-profiled group

Amy A. Hackney

Georgia Southern University

Jack Glaser

University of California, Berkeley

September 25, 2009

(Running Head: Reverse Deterrence in Racial Profiling)

Abstract

A controlled experiment tested the possibility that racial profiling – disproportionate scrutiny of minorities by sanctioned authorities – would have “reverse deterrent” effects on the illicit behavior of members of non-profiled groups (e.g., Whites). Research participants given a task involving extremely difficult anagrams were given the opportunity to cheat. White participants randomly assigned to a condition in which two Black confederates were obtrusively singled out for scrutiny by the study administrator cheated more than Whites in a White-profiling condition and a no-profiling control condition, and more than Black participants in all three conditions. Black participants cheated at comparable levels across the three experimental conditions. The effect of the profiling was therefore a net increase in cheating.
Reverse deterrence in racial profiling:

Increased transgressions by the non-profiled group

Racial profiling is the use of race or ethnicity, or proxies thereof, by law enforcement officials as a basis for judgment of criminal suspicion. Historically, racial profiling has disproportionately affected young, Black men, engendering the term “driving while Black.” Anecdotes from celebrities and public officials (Russell, 1998), surveys of the public (e.g., Newport, 1999), statistical and econometric analyses of archival data (e.g., Harcourt, 2004, 2007), and labor-intensive field studies (e.g., Lamberth, 1994; 1998), as well as court rulings based in part on disclosures of internal departmental memos, indicate that minorities, particularly African Americans and Hispanics, in many jurisdictions have been subjected to stops and searches by police at rates disproportionate to their representation in the population and their rates of criminality. Beyond the detection of drug trafficking, profiling is most likely directed towards Blacks and Latinos to detect shoplifting, towards Latinos to detect immigration violation, and towards Arabs, South Asians, and Muslims to detect terrorist activity, especially since the September 11, 2001 terrorist attacks.

Profiling may be intentional or unintentional. Formal modes of racial profiling, including drug courier profiles developed in the 1970s by the newly formed U.S. Drug Enforcement Agency in the early days of the “War on Drugs” represent formal, intentional profiling, as do terrorist profiles employed in air transit and port security. But decades of psychological research has also documented the ubiquity of nonconscious attitudes and stereotypes, including implicit cognitive associations between Blacks and weapons (e.g., Eberhardt, Goff, Purdie, & Davies, 2004; Glaser & Knowles, 2008; Payne,
2001) and their unintended influence on behavior (see e.g., Greenwald, Poehlman, Uhlmann, & Banaji, 2009), including that of police officers (e.g., Correll, Park, Judd, Wittenbrink, Sadler, & Keesee, 2007; Eberhardt et al., 2004, study 4; Plant & Peruche, 2005) and judges (Rachlinski, Johnson, Wistrich, & Guthrie, in press). Consequently, many police officers no doubt unknowingly make inferences of criminal suspicion based at least in part on race and ethnicity.

The purpose of this article is not to document the breadth or depth of racial profiling in the U.S. There is ample evidence that it is widespread (see e.g., Harris, 2002; Withrow, 2006) and there are also credible studies indicating the absence of profiling in some locales (e.g., RAND, 2004). The present purpose is to investigate an as yet unexamined potential consequence of racial profiling, the possibility that profiling of minorities has a reverse deterrent effect, emboldening individuals who do not fit the profile to commit transgressions they would not otherwise commit, because of a detected decrease in the probability of detection and capture.

Lay people and constitutional scholars alike argue that racial profiling is illegitimate because it violates the civil liberties of minorities and leads to their overrepresentation in the U.S. criminal justice system (e.g., Harris, 1999). Yet despite the discriminatory nature of racial profiling, it is still supported by some commentators and practiced by some law enforcement officials because they believe it is a rational, effective strategy — if minorities are more likely to be criminal, racial profiling would increase incapacitation of criminals and thereby increase public safety. Thus it makes intuitive

1 The RAND study found Blacks in Oakland to be no more likely to be stopped during daylight hours, when their race would be more easily inferred by police, than after dark. The RAND study did, however, find that stops of Blacks tended to be longer and more likely to result in pat down searches.
sense to monitor minorities because they are believed to be the most likely to commit crimes.

Racial Profiling and Deterrence Theory

Racial profiling, and profiling more generally, may also be appealing because it could deter crime. Deterrence theory is based on the idea that as the likelihood of punishment and severity of punishment increase, to the extent that that is perceived and understood by criminals, the rate of crime will decrease. Deterrence is a pillar of criminological theory and has been embraced by both the general public and lawmakers (Blumstein, Cohen, & Nagin, 1978; Paternoster, 1987; Pratt, Cullen, Blevins, Daigle, & Madensen, 2006).

With racial profiling, to the extent that minority group members are aware of the increased, targeted vigilance of the police, deterrence theory holds that they should reduce their participation in the profiled crimes. Accordingly, law enforcement may engage in racial profiling not only with the belief that it will promote criminal incapacitation, but also with the belief that it will most effectively deter criminal activity, resulting in less crime overall.

Racial Profiling and Reverse Deterrence

Even if minorities were more likely to commit drug crimes, and civil rights considerations notwithstanding, racial profiling could be a problematic method of crime control because it may actually increase crime (Glaser, 2006; Harcourt, 2004; 2007). Deterrence usually assumes a general increase in probability of capture or severity of punishment for a given crime. However, racial profiling is a special case because it involves the *concentration* of resources on one group. If total law enforcement resources
are fixed, then the concentration for one group would necessitate a dilution for others. If
deterrence works because those inclined to commit crimes perceive and respond to
changes in expected cost (probability of capture times punishment) of crime, then
potential criminals in the non-targeted population (e.g., Whites) should, inferring a lower
probability of capture, commit more crime. Harcourt (2007) contended that racial
profiling will likely result in a net increase in drug trafficking because Whites are the
majority group and, for a number of reasons including racial differences in economic
motivations for crime, Whites’ criminal activity would be more responsive to changes in
probability of capture. Similarly, Glaser (2006) reasoned that the increase in police
resources necessary for racial profiling reduces the amount of resources available to
monitor the majority group, and as law enforcement attention shifts away from the
majority group, they will increase their criminal activity. Glaser (2006) illustrated via
mathematical simulations that when responsivity to changes in probability of capture
(i.e., deterrence) is incorporated in models of profiling there tends to be a net increase in
crime and decrease in captures relative to models excluding deterrence.

In summary, racial profiling has been criticized for not only discriminating
against members of minority groups and undermining police-minority relations
(Harcourt, 2004; 2007; Harris, 1999) but for being a flawed strategy to reduce crime
(Glaser, 2006; Harcourt, 2004; 2007). Harcourt (2004; 2007) has critiqued the profiling
literature as not empirically demonstrating the effect of racial profiling on the rates of the
profiled crimes. The present research is the first to attempt this.

In an experimental study, we manipulated the presence of racial profiling and
observed its effect on the profiled transgression. In order to achieve experimental control
and the ethical treatment of research participants while still attaining ecological validity and psychological realism, we operationalized crime as cheating on a difficult test in a classroom setting. The rationale behind this operationalization was twofold. First, for racial profiling to serve as a deterrent for minority members, the public must be aware that it is occurring. It seems likely that the general public does believe that racial profiling occurs frequently, as opinion polls show that a majority of both Blacks and Whites believe that minorities are profiled by the police (Newport, 1999). This belief may stem from personal experience or observation, word of mouth, news coverage, the depiction in popular television shows and movies, or the pervasiveness of the Black criminal stereotype. Research demonstrates that knowledge of the Black stereotype as criminal, lazy, and uneducated is also pervasive (Devine, 1989; Devine & Elliott, 1995).

Second, we chose the anagram test developed by Vargas, von Hippel, and Petty (2004) as a measure of cheating because they found that cheating on this anagram test was significantly related to a partially structured measure of dishonesty (which bypassed social desirability concerns) and unrelated to high school grade point average, showing that it was a valid measure of dishonest behavior. Furthermore, while cheating on a cognitive skills test is not technically a crime, in the school setting it is likely to be considered a serious transgression.

As suggested by Harcourt (2004; 2007) and Glaser (2006), we postulated that when Blacks were profiled for cheating, White participants would feel greater impunity and be more likely to cheat than when either Whites were profiled or no profiling occurred. This pattern of cheating was not expected for Black participants. We reasoned that under the condition of White profiling for cheating, Blacks would still tend to feel
monitored, given the prevalence of racial profiling in the real world. We also hypothesized that White participants who were high in social dominance orientation and related ideologies might be particularly likely to take advantage of the racial profiling of Blacks.

Method

Participants

Two hundred and ninety-nine participants from undergraduate psychology courses at Georgia Southern University participated to partially fulfill a course requirement. Only data from Black and White participants were analyzed, resulting in one hundred and ninety-eight White participants (71.7%) and seventy-eight Black participants (28.3%). Of these participants, 60.1% were females and the mean age was 20.1 ($SD = 3.5$).

Design

This experiment was a 2 (Participant Race: Black vs. White) x 3 (Profiling: Black vs. White vs. None) between-subjects design. Participants were randomly assigned to one of the three experimental conditions. In the White-profiling condition participants observed a White female experimenter singling out two White female confederates for cheating; in the Black-profiling condition participants observed a White female experimenter singling out two Black female confederates for cheating. In the Control
condition, nobody was singled out. Participants completed the study in small groups of 2-6 participants in a classroom.²

Procedure

This experiment used the anagram test developed by Vargas, von Hippel, and Petty (2004) to give participants a measurable opportunity to cheat (see Appendix for a complete list of the anagrams and their correct solutions). When participants and confederates arrived at the classroom, they were asked to take a seat where there was an informed consent form. Consent forms were located in the middle area of the classroom at every other seat. After participants signed the consent form, the experimenter explained to them that they would be completing an anagram test that was a measure of “cognitive skills,” followed by demographic and attitude questions. Participants were then told that because some people had tried to cheat in the past, the experimenter would be monitoring for cheating. In the Black- and White-profiling conditions, the experimenter then moved closer to the group, stared directly in the face of each participant and confederate for two seconds, and then pointed to the two confederates, saying, “I’d like you and you to move up front so I can see you better.” The confederates looked puzzled, and then moved to two desks at the front of the classroom, next to the experimenter’s desk. In all three conditions, participants completed a practice anagram to demonstrate the nature of the task. The participants were then given the following instructions regarding the anagram test:

² In general, participants were run in same-race groups, except, because of the confederates’ race, for Black participants in the White-profiling condition and White participants in the Black-profiling condition. However, the no-profiling control condition groups were either same- or mixed-race, allowing for a test of whether group racial composition affected cheating rates.
OK, we’re ready to begin. Once I say “start,” you may open your folder, read the instructions, and begin the anagram task. You are allowed up to 15 minutes to complete the anagrams. When you are finished with the anagrams you may score the anagrams. The answers are on the following page. Once you have scored your anagram test, you may complete the remaining questionnaires. When you have finished all questionnaires in your folder, you may bring them up to me and leave the study. You do not have to wait until everyone is finished before you leave.

The experimenter then moved to the front of the room, sat on the instructor’s desk and, in the profiling conditions, stared at the confederates and did not look at any of the participants for the 15 minute time period. In the control condition, the experimenter intently read a book, newspaper, or magazine and did not look at any of the participants. The remaining questionnaires were demographics, Social Dominance Orientation (Pratto, Sidanius, Stallworth, & Malle, 1994), a manipulation check, and a probe question about the purpose of the study.

The experimenters and confederates were blind to the purpose and hypothesis of the experiment.

Results

Manipulation checks and suspicion

Two questions assessed participants’ perceptions of the experimental manipulation. The first asked whether the researcher monitored for cheating during the study. Among Black and White participants, as expected, those in the two profiling conditions were significantly more likely to respond affirmatively (94.7% in the Black-
profiling and 97.0% in the White-profiling conditions) than in the control condition (74.6%), with the rest responding negatively, and a small number (fewer than 1.5% in all conditions) indicating they were “uncertain” $\chi^2(4, 246) = 27.94, p < .001$. A continuous measure of each participant’s self-reported perception that the experimenter was monitoring him or her for cheating revealed there to be no significant effects of participant race ($F(1, 177) = 1.36, p = .329$), experimental condition, or the interaction of race and condition (F's < 1). Our hypothesis presumes that participants will on some level experience different levels of scrutiny as a function of their race and experimental condition. Results consistent with our hypotheses in the absence of these self-report effects will necessitate that participants were not consciously aware of a connection between confederate race and their race or were unwilling to acknowledge it. Finally, in response to a question asking participants what they thought the purpose of the study was, most (82.6%) reported that they believed it was about cognitive skills, an additional 14.2% reported that they believed it was about political beliefs and cognitive skills, 1.4% (three participants) indicated that one race was singled out, and a few participants gave other answers, including two participants mentioning cheating.

Cheating Score

Using Vargas et al.’s (2004) coding strategy, three pairs of coders, blind to experimental conditions, coded the 15 anagrams for whether the participants attempted to solve the word and got it incorrect or correct, or did not attempt the word. The coders then coded each anagram for whether the participant cheated or not (Cohen’s Kappa

3 Analyses excluding these participants yielded results equivalent to those including them.
ranged from .92-.96 for the pairs of coders). A word was coded as a cheat if the participant answered correctly but there was no indication of work, with work defined as any mark around the word (e.g., dots around letters, slashes through letters), an attempt to solve the word, or erasure marks of such work. A word was also coded as a cheat if it had been misspelled, but the participant counted it as correct, for example, if a participant wrote “panceras” and counted it as a correct solution of *pancreas*.4

Since three of the anagrams were relatively easy for the participants to solve (world, whelp, and equinox), consistent with the analytic procedures from Vargas et al. (2004), correct answers on these words were not scored as cheating; it is plausible that correct answers were achieved without scratch work. As a result, each participant had a cheating score ranging from 0 to 12.5 As Vargas et al. note, the measurement of cheating is not perfect: some individuals may spontaneously solve difficult anagrams without generating scratch work, while others may have cheated after generating scratch work. The latter was probably more prevalent, resulting in a conservative estimate of cheating.

4 Additional examples of misspellings include *photography* for *topography* (requiring an additional *h*) and *yeilding* for *yielding*. *Yielding* was the most common case of a misspelled word scored as correct (10 out of 26). Because it is a fairly reasonable error that may not reflect any deliberate cheating, it may not represent a valid case. Results of analyses reported below, excluding the word yielding, as well as other words (equinox, whelp, world, and other, less reasonable misspellings of yielding – accounting for eight more of the 26 misspelling cases), did not differ from those including them.

5 Additionally, two more words (subvert and yielding) attained relatively high “correct” rates (38.1% and 27.1%, respectively) (the range for the other ten words was 1.7% to 21.4%). Analyses were replicated excluding these words. Although the overall rate of cheating was necessarily lower because there were fewer opportunities to cheat with this smaller set of words, the pattern of results was nearly identical and the pattern of statistical significance and nonsignificance was identical in this and all subsequently reported tests, unless otherwise indicated.
Subsequent results report data for Black and White participants only, because only Black and White confederates were profiled and because other racial and ethnic groups are poorly represented in the sample.6

Rate of cheating. Figure 1 presents the results of the primary test of our hypothesis, comparing the average number of items cheated on out of the 12 difficult anagrams across the three experimental conditions for Black and White participants. To test whether this pattern reflects a significant interaction, we conducted a two-way analysis of variance (ANOVA). While the effect of participant race was only marginally statistically significant, \(F(1, 270) = 2.75, p = .098, r = .1 \), with Blacks cheating less overall than Whites, the effect of experimental condition was significant, \(F(2, 270) = 3.15, p = .044, r = .15 \). These main effects were qualified by the predicted interaction, \(F(2, 270) = 4.76, p = .009, r = .18 \). LSD post hoc simple comparison revealed that the mean cheating rate for White participants in the Black-profiled condition was significantly higher than all other means (all \(p \)’s < .001). No other means differed significantly from each other (all \(p \)’s > .198).

6 Black and White participants were assigned to same-race groups based on self-report or appearance. Occasionally, self-reported race/ethnicity (but not appearance) was inconsistent with group assignment. These participants were excluded from the analyses.

7 Pearson’s \(r \) is provided as a standardized index of effect size.
Figure 1. Average number of items cheated on out of the 12 most difficult anagrams, by condition and participant race.

![Figure 1](image-url)

Error bars represent 95% confidence intervals.

To test the net effect of profiling on cheating, we compared the mean number of items cheated on (by Black and White participants, combined) in the Black-profiled condition to the mean for the no-profiling control condition (the most appropriate baseline, given that Whites are generally not profiled in the real world), finding there to be more cheating overall in the Black-profiling condition, \(t(175) = 3.33, p < .001, r = .24 \). The net effect of profiling will, of course, vary as a function of the ratio of size of minority and majority populations. Nevertheless, this test shows that profiling can, at least under some circumstances, lead to a net increase in transgressions.

Group racial composition. Because, with the exception of the confederates, groups in which participants were run tended to be same-race, differences in rates of cheating as a function of Black- vs. White-profiling could be attributed to the groups’ racial compositions. For example, for White participants, the two profiling conditions also differed in that the White-profiling condition had all-White groups (including
confederates) while the Black-profiling condition involved having two Black students in
the room. The mere presence of Black students may have promoted a higher rate of
cheating for reasons other than a presumed decline in probability of detection. Because
the no-profiling control groups varied in whether they were same-race or mixed-race8 we
were able to conduct an additional test of the effect of racial profiling, comparing the
rates of cheating in the profiling conditions to those in the mixed-race control conditions.

Racial composition does not appear to have influenced White participants in the
no-profiling control condition. The average number of items cheated on was exactly 0.5
in both the mixed-race \((n = 30, SD = 0.68) \) and same-race \((n = 36, SD = 0.697) \) control
conditions. Among Black participants, on the other hand, there was the suggestion of a
tendency to cheat more in the same-race \((M = 1.0, n = 16, SD = 1.46) \) than in the mixed-
race \((M = 0.17, n = 6, SD = 0.408) \) control conditions, \(t(20) = 1.36, p = .189, r = .29 \). It is
possible that Black participants in the same-race control groups are cheating more than
those in the mixed-race control groups because, with all of them being Black, they do not
see racial profiling as a possibility at all. However, given the small samples resulting
from splitting the control condition, and the lack of statistical significance, this result is
only suggestive. The key finding is that among White participants, racial composition of
the no-profiling control condition did not matter at all. The critical comparison is that
Whites cheat significantly more in the Black-profiling experimental condition than in all
other conditions, including the mixed-race no-profiling control condition, all \(p \)'s < .001.

8 Our original intent was to run all groups as same-race (except for confederates), so as to minimize
variance from intra-group racial composition and preclude spontaneous assumptions by participants of
racial profiling. However, whenever scheduling procedures failed to achieve this, those sessions were run
as controls. This provided us with two types of no-profiling control conditions, same-race and mixed-race.
Accordingly, the higher rate of cheating among Whites in the Black-profiled condition cannot be attributed to the mere presence of Black test-takers.

Proportion that cheated. An alternative approach to testing the hypothesis that Whites will transgress more when they believe that Blacks are being profiled is to examine the proportion of participants who cheat at all (i.e., cheat on one or more words). In addition to giving a sense of the effect of profiling on the decision to transgress as opposed to the amount of transgression, this dichotomous approach addresses any concerns about effects being driven by extreme scorers on the continuous cheating index.

9 Criminologists distinguish between *crime rates* and *criminality rates*, the former referring to the amount of crime committed (analogous here to the number of anagrams cheated on), and the latter to the proportion of the population who commit crimes (analogous here to the proportion of participants who cheated on one or more items). Although crime rate is generally what policymakers seek to minimize, it is interesting and potentially valuable to investigate criminality rates as well. Some interventions may be better suited to deter citizens from committing any crime at all, while others may be more effective at reducing, if not eliminating, criminal behavior among those who do commit crime.
Encouragingly, most participants (59.1%) did not cheat at all. Nevertheless, racial profiling appears to have influenced the decision to cheat. As Figure 2 depicts, the results for the proportion that cheated are consistent with those for the continuous measure. Because the dependent variable was dichotomous (cheated vs. did not cheat), log-linear analyses were performed to test the interaction of experimental condition and participant race, revealing a significant interaction, $\chi^2(2, N = 276) = 8.22, p = .016$. Furthermore, simple comparisons revealed that White participants in the Black-profiled condition were significantly more likely to cheat than Whites in the White-profiled condition ($p = .018$) and marginally more likely to cheat than those in the control condition ($p = 0.066$, two-tailed). In contrast, among Black participants, none of the condition proportions differed significantly from each other (all p’s > 0.51).
Ideology. We asked participants to self-report on several ideological variables, theorizing that those higher in Social Dominance Orientation (SDO; Pratto et al., 1994), which reflects preference for and/or greater comfort with social hierarchies, would be more comfortable taking advantage of racial profiling.10 Analyses revealed that SDO did not directly relate to cheating, nor did it significantly interact with experimental condition to influence rates of cheating for either White or Black participants (all p’s > .2). A comparison of White participants scoring in the upper vs. lower tertiles of SDO did reveal a statistically significant difference in the proportion that cheated (on one or more out of 12 anagrams) in the Black-profiled condition. Seventy percent of high SDO White participants cheated, compared to 39% of low SDO White participants in that condition, $t(48) = 2.29, p = .027, r = .31$.11 However, in the absence of a significant higher order interaction of SDO and profiling condition ($F(2, 126) = 1.414, p = .247$), this result should be treated with caution.

There was not a reliable effect of the continuous measure of self-reported ideology, a seven-point scale from very liberal to very conservative, on the number of items cheated on, $r(236) = .08, p = .24$, nor did this variable interact significantly with the effect of experimental condition on cheating. On the other hand, participants’ political party identification was influential. Self-described Republicans ($M = 1.09$) cheated on

10 Two participants asked for clarification of the SDO items regarding increased economic equality, increased social equality, and equality. These three questions (items 8, 9, and 10 of the 14-item scale) may have been confusing because they are phrases rather than complete sentences. These items were removed from the questionnaire for participants 100-302 in order to prevent any future interruptions in the procedure. After these three items were removed there were no further questions from participants about the SDO. Accordingly, we used the shorter version of the scale, excluding the items that were missing for most of the participants. For those who had all 14 items, the scores on the short and long versions of the scale were almost perfectly correlated, $r(75) = 0.975 (P < 0.001)$. Cronbach’s alpha for the 11-item scale for White and Black participants was .841.

11 The same test for the continuous dependent variable, mean number of items cheated on, was only suggestive, $t(48) = 1.48, P = .147$.

more items than did self-described Democrats ($M = .56$), $t(204) = 2.381, p = .018, r = .016$. Similarly, on the dichotomous measure of cheating (once or more) or not, Republicans (48.3%) cheated more than Democrats (32.2%), $\chi^2(1, 206) = 5.39, p = 0.02, \varphi = 0.16$. However, it is important to consider that most Black participants were Democrats and, because Black participants tended to cheat less, the party identification effect could be attributed to race. Accordingly, the effect of party identification was tested among White participants only. Among White participants, Republicans did cheat more ($M = 1.11$) and more often (49.1%) than did Democrats ($M = .63, 34.2$), but these differences only trended toward statistical significance, $t(150) = 1.43, p = .154, r = .12$ for means; $t(150) = 1.60, p = .111, r = .13$ for proportions.

The small number (2) of Black Republicans in the sample, reflective of the general population, rendered impossible a test of the interaction of race, party, and experimental condition. However, a test of the interaction of party and condition among White participants was possible (Black Democrats, $n = 52$, cheated at the same rate across all three conditions, rendering tests among them unnecessary). While also relatively low in statistical power (there were only 38 White Democratic participants, spread over the three experimental conditions), the ANOVA yielded suggestive results (see Figure 3). The interaction of Party ID and condition trended toward significant, $F(2, 146) = 2.13, p = .122, r = .17$.

12 Democrats (39.6%) and Republicans (51.1%) comprised almost the entire sample among those who were asked for party identification. The next largest group (4.7%) was those who indicated identifying with no party.

13 In this case, the analogous, and slightly less statistically powerful, test of cheating out of the 10 most difficult items was only marginally statistically significant, $\chi^2(1, 206) = 2.99, p = 0.084, \varphi = 0.12$.
The difference between White Republicans and White Democrats in the Black-profiling condition also only trended toward significance, \(t(46) = 1.527, p = .134, r = .22 \), although, with only 11 White Democrats in that condition, this test is low-powered. The more powerful (larger sample) tests comparing White Republicans revealed there to be a large and highly significant effect of experimental condition, \(F(2, 113) = 12.833, p < .001, r = 0.43 \). Post hoc simple comparisons revealed that White Republican participants in the Black-profiling condition cheated significantly more than in the White-profiling and control conditions (\(p \)'s < .001) while those in the latter conditions did not cheat at different rates (\(p = .9 \)). Among White Democrats, there were no significant differences across conditions (all \(p \)'s > .39), although these tests were relatively low in statistical power, due to small samples.

Figure 3. Average number of items cheated on by White participants out of the 12 most difficult anagrams, by condition and participant party identification.

Error bars represent 95% confidence intervals.

Discussion

The goal of this study was to experimentally investigate the effects of racial profiling on the rate at which people commit the profiled transgression. We theorized
that profiling would increase illicit activity among the non-profiled, majority group – that it would have a reverse deterrent effect. To our knowledge, this is the first study of its kind. As hypothesized, we found that White participants in the Black-profiled condition cheated more than participants in any other condition. Although cheating is not a crime, it is a dishonest behavior that is considered extremely unethical in academic settings, where it can have serious consequences. These results suggest that in the real world, racial profiling could increase crime among non-profiled groups, having an ironic, counterproductive effect.

We also found that Blacks did not cheat more when Whites were ostensibly profiled. It is possible that, being minority group members, the White identity of others is less salient and they do not infer that (White-targeted) racial profiling is happening. Furthermore, there is not much talk, if any, of racial profiling of Whites in America, so there may have been no relevant mental schema activated when Whites were singled out by the experimenter. It seems plausible that in the White-profiled condition, participants assumed that the confederates were being singled out for their own suspicious behaviors, rather than for being White. This is consistent with the finding that Whites did not exhibit a lower rate of cheating in the White-profiled condition relative to the control condition.

The findings with regard to party identification are interesting and potentially illuminating. However, because most of those findings that Republicans cheated more than Democrats only trended toward statistical significance, we can only speculate as to their meaning. And such speculation is particularly tenuous in the absence of an effect of ideology on cheating. Nevertheless, the finding that White Republicans cheated more
than White Democrats hones the interpretation of the data, because this is only the case in the Black-profiling condition. Furthermore, a particularly pronounced effect was that of experimental condition among White Republican participants, where cheating rates were dramatically higher in the Black-profiling condition. This effect was considerably smaller among White Democrats. So, while these results are not unambiguous with regard to significance levels, it cannot be ignored that the reverse-deterrent effect seems to be driven largely by White Republicans. It may be that, due to some as yet unexplored ideological or cultural difference between parties, possibly even resentment over “reverse discrimination,” Republicans feel more comfortable taking advantage of a racially discriminatory situation. It is also possible that White Republicans in this Southern sample have less exposure to Blacks than do White Democrats and, as a result, find Blacks more distinctive. This in turn could make the racial profiling more salient for White Republicans. Further investigation would be needed to identify the cause of these results.

The current study is a first step in understanding the effects of racial profiling on the rate of the profiled crime. Because racial profiling is stigmatizing and humiliating for minorities, causes mistrust between minority communities and the police, and contributes to a disproportionate number of minorities being imprisoned, it is important to assess whether racial profiling has the presumed effect of reducing crime when weighing its societal costs against its presumed benefits.

An oft-stated defense of profiling is that it reduces crime and thereby increases public safety. This is based on the presumption that it promotes the efficient allocation of police resources to groups with presumed higher rates of crime, thereby leading to more
criminal captures and greater deterrence. Our thesis holds that, to the extent that
deterrence is operative with regard to profiled crimes, and to the extent that it functions as
criminological canon holds (i.e., criminals respond behaviorally to changes in the
probability of capture), profiling one group should have a reverse deterrent effect on
criminally inclined individuals in other groups.

If the profiled group is less sensitive to changes in the probability of capture, as
Harcourt (2007) argues is true for low-income minorities, or if non-profiled groups are
large and have substantial numbers of criminals, as is typically the case (e.g., Whites), the
net effect of profiling could be to increase crime. In the current study, where Whites and
Blacks had comparable rates of cheating at baseline, racial profiling led to a net increase
in transgressions; there was more total cheating when Blacks were profiled than when
nobody was profiled.

Using a person’s race as a basis for criminal suspicion (excluding the use of race
in suspect descriptions for reported crimes) is not legally permissible. However, U.S.
courts have tended to defer to law enforcement when racial profiling is alleged, as long as
there is an articulated pretext (e.g., reckless driving) for a given stop or search.
Legislative efforts to formally ban racial profiling have not been successful.
Furthermore, profiling is probably commonplace, and more generally tolerated, in
counterterrorism. The possibility that profiling racial or ethnic minorities could increase
crime and terrorism, combined with the legal and civil rights issues, as well as dramatic
racial disparities in the criminal justice system, should be considered by law enforcement
executives and legislators when setting policy related to racial profiling.
References

APPENDIX

Anagrams and Solutions

1) dolrw: world*
2) recsnapa: pancreas
3) nixequo: equinox*
4) athiscars: catharsis
5) ecbiaanm: ambiance
6) gnimimtyana: magnanimity
7) ngliebapaar: pleabargain
8) rkaihscb: brackish
9) edmrulso: smoulder
10) drinpomlea: palindrome
11) pghootrayp: topography
12) uioettms: titmouse
13) tervbus: subvert**
14) ewlhp: whelp*
15) edyiginl: yielding**

* Indicates frequently solved anagrams that were not included in the reported analyses.

** Indicates occasionally solved anagrams that were excluded from secondary analyses.