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1 Introduction

A striking feature of global economic activity is the extent to which it is spatially correlated. This

spatial structure is evident in Figure 1: low-income countries tend to be near other low-income

countries and high-income countries are similarly clustered near one another. This pattern reflects

the fact that many determinants of income are spatially correlated. Neighboring locations often

have similar demographics, political institutions, and natural endowments, as we document in Table

F.1. What are the economic consequences of such spatial correlation? That is, what would happen

if countries’ productivities had the same mean and variance but were reshuffled to be less spatially

correlated?

Figure 1: The spatial correlation of economic activity

Notes: Log GDP per capita in 2013. Source: Feenstra, Inklaar and Timmer (2015).

In this paper, we show that greater spatial correlation of productivities increases welfare inequal-

ity by altering the pattern of international trade. In theory, the spatial structure of productivity

shapes countries’ gains from trade because they trade more with their neighbors than distant coun-

tries. We empirically validate this prediction, finding that an observable sufficient statistic for

the gains from trade responds to exogenous variation in the spatial correlation of productivities

induced by a global climatic phenomenon over the last half-century. To demonstrate how this

result can inform empirical research, we show that incorporating the general-equilibrium effects

of increased spatial correlation into an otherwise standard reduced-form framework for projecting

climate-change impacts leads to greater projected inequality.

In Section 2, we articulate why the spatial correlation of productivity may influence welfare

inequality between trading economies using a standard model of trade. A country benefits by

trading with more productive counterparts, which demand more of its exports and sell it cheaper

imports. Since trade costs increase with geographic distance (Disdier and Head, 2008), a country

enjoys larger gains from trade when its neighbors, rather than distant trading partners, are more

productive. Thus, when productivities are spatially correlated, more productive countries gain
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more from trade because their neighbors are more productive. When productivities are spatially

uncorrelated, the gains from trade are evenly distributed across space. We prove that greater spatial

correlation increases welfare inequality in a four-country model. We then simulate a quantitative

trade model with a realistic geography and find that the Moran’s I statistic, a commonly used

measure of global spatial correlation, aptly summarizes the model’s rich spatial structure. In

particular, we show that a reduced-form regression that can be readily taken to data and uses the

Moran’s I statistic captures 93% of the welfare variance generated by the model when productivities

are reshuffled.

Our main contribution is to empirically validate this general-equilibrium prediction about pro-

ductivity and the gains from trade. Causal inference of general-equilibrium effects is typically

difficult because of a paucity of unaffected control units. This is particularly true when the setting

involves international trade and the treatment of interest affects the entire trade network. Under

such circumstances, comparisons must be made across equilibria or time. While we cannot ex-

perimentally reshuffle productivities, we can approximate the experimental ideal using a suitably

exogenous phenomenon that varies the global spatial correlation of productivities across time.

To that end, our identification strategy exploits a naturally-occurring climatic phenomenon

known as the El Niño-Southern Oscillation (ENSO), described in Section 3. In years when ENSO

is strong, there are large, spatially contiguous regions of similar temperature conditions. Figure 2

depicts the temperature deviations caused by these ENSO events. Locations near the equator tend

to become hotter (red), while mid-latitude locations tend to become cooler (blue). As a result,

ENSO increases the global spatial correlation of cereal productivities.

Figure 2: ENSO and the global spatial structure of temperature

Notes: This map depicts pixel-level correlations between ENSO in December and average temperature during the
following February for 1961-2013. Red areas are hotter with warmer ENSO conditions. Blue areas are cooler with
warmer ENSO conditions.
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In Section 4, we examine the effect of this natural experiment on trade patterns using a sufficient-

statistic approach to infer the gains from trade in cereals from observed expenditure shares. In a

broad class of trade models, a country’s gains from trade are revealed by the share of its expenditure

devoted to imports (Arkolakis, Costinot and Rodŕıguez-Clare, 2012). We therefore estimate how

temperature- and ENSO-driven variation in cereal productivities affects these expenditure shares.

As predicted, we find that greater spatial correlation of productivity increases the cross-sectional

correlation between productivity and the gains from trade. A one-standard-deviation increase in

the spatial correlation of cereal productivities increases the dispersion of welfare attributable to

cereal consumption by 2%.

Since spatial correlation of economic features is pervasive, this mechanism may be relevant for

empirical analyses of various determinants of economic outcomes. Much empirical research looks at

the economic consequences of local characteristics without addressing the broader spatial structure

of these features. We propose including the spatial correlation of productivity in reduced-form

exercises to help account for international trade linkages without imposing the full structure of

quantitative trade models.

To illustrate this approach, we apply it to anthropogenic climate change in Section 5. A growing

reduced-form literature projects future climate impacts using estimates from historical local temper-

ature variation. These projections for each location implicitly hold temperatures in other locations

fixed at their historical values. Climate change, however, is a global phenomenon and expected to

simultaneously alter productivities across the planet. To examine the general-equilibrium role of

spatial correlation, we incorporate the change in the spatial correlation of cereal productivity due

to climate change into an otherwise standard reduced-form projection. This predicts a 20% greater

increase in welfare inequality from cereal consumption by the end of the twenty-first century. A

projection that omits the change in spatial correlation considerably understates the climate-driven

welfare losses for most countries in Africa because these countries jointly experience larger produc-

tivity losses. While these projections are not literal forecasts of future climate impacts because

they abstract from adaptation, migration, and other possible responses, they demonstrate how

one can examine the general-equilibrium consequences of spatial correlation within a reduced-form

framework.

This paper relates to the long-running dialogue regarding the influence of environmental and

geographic endowments on the well-being of societies (Sachs and Warner, 1997; Easterly and Levine,

2003). Persistent correlations between local geographic endowments and local economic outcomes

are often remarkable (Hornbeck, 2012), with prior work articulating numerous potential channels

of influence from local conditions to local productivities (Nordhaus, 2006; Bleakley, 2007) and local

institutions (Nunn and Puga, 2012). Our analysis advances this literature by exploring the influence

of non-local geographic endowments, occurring at both neighboring and distant locations, in the

determination of local outcomes – an effect that depends critically on the overall spatial structure

of endowments. In short, we focus on the general-equilibrium role of geography.

This paper thus contributes to a large literature in international trade and economic geography
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studying local economic consequences of the geographic distribution of economic activity (Head

and Mayer, 2004; Redding and Venables, 2004). Our results link the distribution of the gains from

trade to the spatial structure of productivity. In neoclassical trade models, a country’s gains from

trade depend on its terms of trade – the relative price of its exports compared to its imports. In

small-open-economy models, these prices are exogenous, so the terms of trade do not depend on

local economic conditions. By contrast, Costinot and Rodŕıguez-Clare (2014, p.251) say that “one

of the main goals of quantitative trade models therefore is to predict the terms-of-trade changes

associated with particular shocks.” The terms of trade are also important to topics in development

and growth.1 Despite this prominent theoretical role, there is little empirical evidence linking

changes in the terms of trade to their economic determinants.2 We find that expenditure shares

respond to local productivity shocks, contrary to the small-open-economy assumption. Higher

productivity worsens a country’s terms of trade, and this effect is dampened when neighboring

countries also have higher productivity.

Spatial correlation in the level of productivity (absolute advantage) is distinct from spatial cor-

relation in the pattern of relative productivities (comparative advantage). Comparative advantage

causes countries to gain by specializing and trading with each other. Absolute advantage governs

how these gains from trade are divided between countries through the terms of trade. Our predic-

tion concerns the spatial correlation of absolute advantage. In standard quantitative trade models,

the pattern of comparative advantage is symmetric across countries (Lind and Ramondo, 2018). If

comparative advantage were spatially correlated, neighboring countries would gain less by trading

with each other due to the similarity of their relative productivities. Our empirical estimates thus

capture the consequences of spatial correlation of absolute advantage as mediated by any spatial

correlation in comparative advantage.

The most closely related study of global agricultural trade is by Costinot, Donaldson and Smith

(2016), who examine the consequences of climate change using a model of international trade and an

agronomic productivity forecast. While we focus on the spatial correlation of absolute advantage,

they focus on changes in comparative advantage and within-country crop switching. While they

employ agronomic forecasts to predict changes in trade flows, we empirically estimate the trade

effects of historical variation in agricultural productivities.

Finally, this paper speaks to the growing empirical literature examining how anthropogenic

climate change may affect inequality across countries, which could provide a new consideration for

the long-running discussion of cross-country convergence (Barro, 1991; Johnson and Papageorgiou,

2018). Prior research employing reduced-form estimates from historical local temperature variation

projects increased dispersion in various economic outcomes across countries under climate change

(Dell, Jones and Olken, 2012; Burke, Hsiang and Miguel, 2015). This paper shows that projected

1 For example, in Acemoglu and Ventura (2002), diminishing returns due to terms-of-trade effects govern the
dispersion of the world income distribution.

2 Empirical work, which “typically assumes that countries are small and that the terms of trade are exogenous”
(Debaere and Lee, 2003), has primarily focused on the consequences of external shocks to countries’ commodity terms
of trade. Notable exceptions are Acemoglu and Ventura (2002) and Debaere and Lee (2003), which study the effects
of capital accumulation on the terms of trade.
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future welfare inequality may be even greater when such projections include general-equilibrium

effects due to increases in the spatial correlation of productivity. In doing so, this paper advances

the climate-impacts literature by bringing the reduced-form approach conceptually closer to recent

structural macroeconomic analyses exploring the spatial distribution of economic activity under

climate change (Brock, Engström and Xepapadeas, 2014; Desmet and Rossi-Hansberg, 2015; Krusell

and Smith, 2016).

2 Theoretical framework

This section introduces our theoretical framework that shows how the spatial correlation of pro-

ductivities may affect welfare inequality and guides our empirical investigation of this prediction.

In any trade equilibrium, a country’s welfare can be stated as the sum of its welfare under

autarky and its gains from trade. A country’s welfare under autarky depends only on its own

productivity. Its gains from trade depend on the entire distribution of productivities across the

trading network. The variance of welfare across countries is the variance of this sum. It therefore

depends on not only the variances of productivity and the gains from trade but also the covariance

between these two components.

We investigate how the spatial correlation of productivities influences the covariance between a

country’s productivity and its gains from trade. This requires an observable outcome that identifies

the gains from trade. Across a broad class of models, a country’s gains from trade are revealed

by the share of its expenditure devoted to its own output. The less a country spends on its own

output, the larger its gains from trade. In autarky, all its expenditure is on its own output. In

the trade equilibrium, this expenditure share, when combined with the “trade elasticity” governing

how consumers substitute across consumption sources, summarizes the welfare gain from exchange

with other locations (Arkolakis, Costinot and Rodŕıguez-Clare, 2012).

Section 2.1 establishes that within this class of trade models our object of interest is the covari-

ance between a country’s productivity and its domestic share of expenditure. Section 2.2 illustrates

how this covariance depends on the spatial correlation of the productivity distribution and shows

how to identify this ceteris paribus prediction in empirical settings. Section 2.3 discusses the role

of comparative advantage and describes conditions under which examining one sector in isolation

is informative about welfare dispersion in a multi-sector world. Section 2.4 describes the criteria

used to select a suitable empirical setting. Details and derivations are available in Appendix A.

2.1 Sufficient statistics for welfare dispersion

We consider a general economic environment within the class of models characterized by Arkolakis,

Costinot and Rodŕıguez-Clare (2012), in which the gains from trade can be inferred from the

domestic share of expenditure. We assume perfect competition in the main text, while Appendix

A.1 covers the case of monopolistic competition. The world economy is comprised of j = 1, . . . , N

countries.

5



Preferences. Individuals in country j have preferences with a constant elasticity of substitution

σ > 1 over goods indexed by ω. The accompanying price index is

Pj =

(∫
ω
pj(ω)1−σdω

)1/(1−σ)

.

Production. There is one factor of production, and each country j inelastically supplies Lj

units of that factor, which earns wage wj . A country’s income is therefore Yj = wjLj . The produc-

tion technology exhibits constant returns to scale and is employed by perfectly competitive firms.

The cost of producing in country j depends on productivity Aj . This parameter’s microeconomic

meaning is model-specific: Aj governs the cost of producing j’s good in the Armington model and

the location parameter of j’s cost distribution for a continuum of goods in the Eaton and Kortum

(2002) model.

Trade costs. There are iceberg trade costs, such that selling one unit of a good to j from i

requires τij ≥ 1 units, with τii = 1. By the no-arbitrage condition, pj(ω) ≤ τijpi(ω).

Gravity equation. Denote sales from i to j byXij and j’s total expenditure byXj ≡
∑N

i=1Xij .

The share of expenditure by j on goods from i takes the form of a gravity equation:

λij =
Xij

Xj
=

χi (τijwi)
−ε∑N

l=1 χl (τljwl)
−ε =

χi (τijwi)
−ε

Φj
, (1)

where χi is a function of Ai and other structural parameters that are not trade costs, ε is the

“trade elasticity”, and Φj ≡
∑N

l=1 χl (τljwl)
−ε is the “inward multilateral resistance” term (Head

and Mayer, 2014). Φj is a (decreasing) transformation of j’s price index that summarizes consumers’

access to goods from every source.

Equilibrium. In equilibrium, labor-market clearing, goods-market clearing, and budget con-

straints are satisfied such that total income Yi = wiLi equals total expenditure Xi. Thus, an

equilibrium is a set of incomes {Yi}Ni=1 such that

Yi =
N∑
j=1

λijYj .

In this environment, the results of Arkolakis, Costinot and Rodŕıguez-Clare (2012) imply that

real consumption per capita is

ln (Ci/Li) = lnAi + γ − 1

ε
lnλii, (2)

where γ is a constant determined by structural parameters that are not productivity. The former

term, lnAi + γ, is per capita welfare in autarky. In the absence of trade, a country’s welfare is

independent of other countries’ conditions and depends only on its own productivity. The latter

term, −1
ε lnλii, is a sufficient statistic for the gains from trade relative to autarky. It is a country’s

expenditure share on its own goods, mediated by the trade elasticity ε that governs how bilateral
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expenditures respond to changes in bilateral trade costs. Since expenditure shares depend on

relative prices, this sufficient statistic is closely linked to the country’s terms of trade: a country

purchases less from itself when its export price is higher. With this standard equilibrium expression

for welfare in hand, we can consider how dispersion in ln (C/L) across countries depends on the

spatial distribution of productivities.

From equation (2), variance in welfare across countries is governed by the variance of produc-

tivity, the covariance of productivities and gains from trade, and the variance of those gains.

var (ln (Ci/Li)) = var (lnAi) + 2cov

(
lnAi,

−1

ε
lnλii

)
+ var

(
1

ε
lnλii

)
(3)

To examine the role of spatial correlation, consider two productivity distributions – a correlated

state c and an uncorrelated state u – in which the unconditional variance in productivities is

identical, var(lnAci ) = var(lnAui ). Under this assumption, the difference in welfare dispersion

between the correlated and uncorrelated states is

var (ln (Cci /Li))− var (ln (Cui /Li)) = −2

ε
[cov (lnAci , lnλ

c
ii)− cov (lnAui , lnλ

u
ii)]

+
1

ε2
[var (lnλcii)− var (lnλuii)] . (4)

The latter term should make only a second-order contribution to the difference in welfare disper-

sion, since 1
ε2

is an order of magnitude smaller than 2
ε for empirically relevant values of the trade

elasticity.3

The first-order difference in welfare dispersion is governed by the covariance of productivities

and domestic shares of expenditure. We expect this covariance to be positive. A more productive

country produces greater output, so the relative price of its output is lower and it sells more to

every consumer, including itself. Thus, ceteris paribus, a more productive country has worse terms

of trade and purchases more from itself.4

Our primary focus, however, is how this covariance changes with the degree of spatial correlation

in productivities. We will estimate this relationship empirically, but we first illustrate why we expect

that cov (lnAci , lnλ
c
ii) < cov (lnAui , lnλ

u
ii) and thus that var (ln (Cci /Li)) > var (ln (Cui /Li)).

3 Typical estimates of the aggregate trade elasticity are between 4 and 8. Caliendo and Parro (2015) estimate
that the trade elasticity for agricultural goods is between 8 and 17. Provided that var (lnλcii) − var (lnλuii) is the
same order of magnitude or smaller than cov (lnAci , lnλ

c
ii) − cov (lnAui , lnλ

u
ii), this means that the second term

on the right side of equation (4) is an order of magnitude smaller than the first term. Appendix A.1.3 shows
that, if trade costs are symmetric (τij = τji) and countries equal sized (Li = L ∀i), var (lnλcii) − var (lnλuii) =
ε
ε+1

[cov(lnAci , lnλ
c
ii)− cov(lnAui , lnλ

u
ii)] + 1+2ε

1+ε
[cov(ln Φci , lnλ

c
ii)− cov(ln Φui , lnλ

u
ii)]. Heuristically, the latter term

is of smaller magnitude, since Φi is a price-index term that is a weighted sum of all other countries’ prices. Thus,
var (lnλcii)− var (lnλuii) is the same order of magnitude as cov (lnAci , lnλ

c
ii)− cov (lnAui , lnλ

u
ii).

4 Under certain conditions, productivity increases can reduce the terms of trade so much that this growth is
immiserizing (Bhagwati, 1958). The assumptions of standard quantitative trade models imply that increases in TFP
do reduce the terms of trade but not so much as to lower welfare. Consider the free-trade equilibrium, τij = 1 ∀i, j.
In this case, there is a closed-form solution for equilibrium incomes (Yi = (AiLi)

ε
ε+1 ) and we obtain the following

comparative statics: d lnλii
d lnAi

= ε
ε+1

(1− λii) > 0 and d lnCi
d lnAi

= 1
ε+1

(ε+ λii) > 0.
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2.2 Spatial correlation and the covariance of productivity and gains from trade

This section illustrates how the spatial correlation of productivity influences the variance of welfare

by shaping the covariance of productivity and gains from trade. The key is that bilateral trade

costs increase with the physical distance between trading partners. Thus, when proximate countries

have more similar productivity levels, more productive countries tend to enjoy greater gains from

trade because their nearby trading partners are also more productive. Conversely, less productive

countries experience lower gains from trade when productivity is more spatially correlated.

We first examine the role of the spatial correlation of productivity in two settings in which

countries are perfectly symmetric except for productivity differences. We prove our theoretical pre-

diction in a four-country model and show that it holds in numerical simulations of a many-country

model. We then examine how to identify this ceteris paribus prediction in asymmetric environments

in which countries differ by other, potentially confounding, determinants of equilibrium trade flows.

These more realistic examples inform how we empirically investigate our prediction.

2.2.1 Stylized example 1: Four-country case

We start with the simplest possible environment in which one can demonstrate our result. The

world is comprised of N = 4 countries of equal size, Li = L for i = 1, . . . , 4. The four countries

are evenly spaced on a symmetric geography such that each country is “near” two neighboring

countries and farther from the remaining country. Thus, the trade cost matrix is

τ ≡


1 d1 d2 d1

d1 1 d1 d2

d2 d1 1 d1

d1 d2 d1 1

 , 1 < d1 < d2 < d2
1 (5)

where the trade costs d2 > d1, a mnemonic for distance, obey the triangle inequality: d2 < d2
1.

For these four countries, consider a mirror-image productivity distribution in which two coun-

tries have high productivity and the other two countries have low productivity. Without loss of

generality, normalize the lower productivity to one and denote the higher productivity level by

ã > 1. For this symmetric geography with four countries, these productivities might alternate

– high, low, high, low – or the world may be divided into a high-productivity region and a low-

productivity region. These two spatial arrangements are depicted in Figure 3. What are the

consequences for trade and welfare?

Proposition 1 shows that the “regional” arrangement of productivities exhibits greater spatial

correlation, as measured by Moran’s I.5 As a result, the covariance of productivity and the domestic

5 Moran’s I is a commonly used measure of global spatial correlation that can be computed for any geography
endowed with a distance metric. It takes values between -1 and 1. Moran’s I for variable xi is defined by

I ≡ N∑
i

∑
j 6=i ωij

∑
i

∑
j 6=i ωij (xi − x) (xj − x)∑

` (x` − x)2
,
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Figure 3: Four-country example: Productivity distributions

High Low

HighLow

“Alternating” arrangement

High High

LowLow

“Regional” arrangement

share of expenditure is lower when productivities are distributed this way. That makes the variance

of welfare across countries greater. The mean of welfare across countries is lower. The proof of

Proposition 1 appears in Appendix A.2.1.

Proposition 1 (Four-country case). Consider an economy in which N = 4, Li = L ∀i, ε ≥ 1, and

trade costs τij are given by condition (5). Comparing the productivity distributions Ac = (ã, ã, 1, 1)

and Au = (ã, 1, ã, 1), where ã > 1,

• Ac is more spatially correlated than Au in the sense that the value of Moran’s I for lnAc is

greater for any spatial weight matrix that is a one-to-one mapping between ωij and τij and

assigns a higher weight to the pairs with τij = d1 than pairs with τij = d2.

• Equilibrium income inequality, given by Y1/Y4, is greater for the more spatially correlated pro-

ductivity distribution, Ac. Equivalently, the more productive economies’ equilibrium double-

factoral terms of trade are greater for the more spatially correlated productivity distribution.

• The covariance of productivity and the domestic share of expenditure is lower for the more

spatially correlated productivity distribution: cov(lnAci , lnλ
c
ii) < cov(lnAui , lnλ

u
ii).

• The variance of welfare across counties is greater for the more spatially correlated productivity

distribution: var(ln(Cci /L)) > var(ln(Cui /L)).

• The mean of welfare across countries is lower for the more spatially correlated productivity

distribution: E(ln(Cci /L)) < E(ln(Cui /L)).

This four-country case establishes our prediction linking the spatial correlation of productivity

to welfare inequality. Next, we illustrate this logic in a setting with an arbitrary number of countries

that are perfectly symmetric except for productivity differences.

2.2.2 Stylized example 2: Circular geography with productivity sine wave

Our second stylized environment has productivity follow a sine wave over a one-dimensional space.

There are N locations evenly spaced on the unit circle. These locations have equal population

where N is the number of countries, ωij = ωji is a spatial weight, and x is the cross-sectional average.
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sizes, Li = 1 ∀i. Trade costs depend only on distance: the log trade cost between two locations is

proportionate to the log distance between them. The trade elasticity is ε = 1, so that welfare is

simply lnAi − lnλii. Productivity lnAi follows a sine-wave distribution, with an integer frequency

of θ over the circle’s circumference. This functional form has two convenient properties. First,

the spatial correlation of productivity is governed by the frequency θ: lower frequencies exhibit

greater spatial correlation. Second, the mean, variance, skewness, and kurtosis of the productivity

distribution are independent of the frequency. Thus, we can explore the effect of spatial correlation

by varying θ alone. While we do not have an analytical result, our numerical simulations deliver

the same patterns for all parameter values we have examined.6

Figure 4: Circular geography with productivity sine wave

-1.0

-0.5

0.0

0.5

1.0

-3 -2 -1 0 1 2 3

Countries’ locations on [−π, π]

lnAi, θ = 1
lnAi, θ = 4

lnλii, θ = 1
lnλii, θ = 4

lnCi, θ = 1
lnCi, θ = 4

Notes: This figure depicts an economy with a circular geography and a productivity distribution that follows a
sine wave with frequency θ. There are N = 50 locations evenly spaced on the unit circle. Bilateral log trade costs
are proportionate to the log length of the arc between two points on the circle. The (demeaned) distributions of
productivities, equilibrium domestic shares of expenditure, and welfare are depicted for the cases of θ = 1 and θ = 4.
See Appendix A.2.2 for parameterization details.

Figure 4 depicts the spatial distributions of productivities (lnAi), domestic shares of expenditure

(lnλii), and welfare (lnCi) in this circular economy for the cases in which the sine wave has

frequencies of θ = 1 and θ = 4. It is clear that the spatial correlation of productivity is greater in

the θ = 1 case, as location “zero” divides the circle into two contiguous regions with above-average

and below-average productivity. In the θ = 4 case, spatial correlation is lower because the distance

between the productivity sine wave’s peaks and troughs is shorter. Stated in terms of Moran’s I,

the spatial correlation statistic is 0.566 for θ = 1 and 0.182 for θ = 4.

The frequency of the exogenous productivity sine wave affects the amplitude of the endogenous

welfare sine wave. In the case of higher spatial correlation, the equilibrium domestic share of

6 Details of the parameters underlying Figure 4 are in Appendix A.2. By Theorem 1 of Allen, Arkolakis and
Takahashi (2017), the equilibrium solution depicted for each parameter value is unique.
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Figure 5: Circular geography with productivity sine wave: cov(lnλii, lnAi)
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Notes: This figure depicts the lnλii–lnAi relationship for an economy with a circular geography and a productivity
distribution that follows a sine wave with frequency θ. The legend reports the value of Moran’s I for each sine wave.
Geographic locations and trade costs are the same as in Figure 4. See Appendix A.2.2 for parameterization details.

expenditure series follows the productivity series less closely, as evident by the larger vertical gap

between them. Thus, the smaller amplitude of the lnλii series when productivity is more spatially

correlated is accompanied by a lower value of cov(lnAi, lnλii). As a result, the amplitude of the

welfare series is greater in the θ = 1 case. Welfare dispersion is higher when productivity is more

spatially correlated.

Figure 5 depicts the expenditure-productivity relationship in our sine-wave example for more

values of the sine-wave frequency, θ. The scatter plot reveals an almost perfectly linear relationship

between lnλii and lnAi. The slope of this relationship, which is proportionate to cov(lnAi, lnλii),

systematically varies with the spatial correlation of the sine wave. When the productivities are

more spatially correlated, a location’s domestic share of expenditure is less responsive to its own

productivity level.

2.2.3 Asymmetric environments

Our stylized, many-country example in Section 2.2.2 demonstrates the consequence of spatial cor-

relation of productivity for global welfare inequality in an ideal environment that holds fixed all

other economic elements. Our empirical investigation must address the facts that there are other

determinants of equilibrium trade flows and the distributions of trade costs and productivities are

not symmetric. In this section, we use numerical simulations to motivate our empirical estimating

equation that identifies our ceteris paribus prediction about the impact of spatial correlation in

such settings.

First, economic characteristics other than productivity that influence domestic shares of expen-
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diture complicate bivariate plots like Figure 5. A simple example is heterogeneity in country size

Li: all else equal, larger economies have a larger domestic share of expenditure. Variation in size

orthogonal to productivity simply adds noise to the bivariate plot. However, variation in size cor-

related with productivity also introduces omitted variable bias. This can be empirically addressed

by examining the covariance of the domestic share of expenditure and productivity conditional on

size. More generally, any time-invariant country characteristics that influence the domestic share

of expenditure and might be correlated with productivity can be absorbed by country fixed effects.

We illustrate this in Figure 6, which depicts the relationship between lnλii and lnAi in an

environment that features, like the previous section, a circular geography and sine-wave produc-

tivity, and, unlike the previous section, heterogeneous country sizes. In particular, country size

lnLi is positively correlated with productivity lnAi in the θ = 1 state. The left panel depicts the

covariance of lnλii and lnAi for the frequencies θ = 1 and θ = 4. The right panel depicts these

covariances conditional on country fixed effects. While our ceteris paribus prediction is not evident

in the left panel due to omitted variable bias, the right panel shows that the covariance of lnλii

and lnAi is lower when θ is lower, controlling for heterogeneous country sizes.

Figure 6: Circular geography with heterogeneous sizes and productivity sine wave
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Notes: This figure depicts the λii–Ai relationship for an economy with a circular geography and a productivity
distribution that follows a sine wave with frequency θ. Geographic locations and trade costs as in Figure 4. Country
sizes Li are positively correlated with Ai in the θ = 1 state. See Appendix A.2.2 for parameterization details.

Second, the real world features productivities and trade costs that do not exhibit the symmetry

of a sine wave on a circle. Departing from the sine-wave distribution, Figure A.1 in Appendix

A.2.2 depicts the expenditure-productivity relationship for the circular geography with equal-sized

countries when we shuffle a productivity vector drawn from the normal distribution so as to vary its

spatial correlation. There is a clear negative relationship: as Moran’s I increases, the equilibrium

domestic share of expenditure is less responsive to domestic productivity. Departing from the

circular geography, Figure A.2 in Appendix A.2.3 plots the expenditure-productivity relationship

against Moran’s I for an economy with countries randomly located on a two-dimensional space

and random assignments of productivity levels that differ only in their spatial correlation. In such

asymmetric geographies, some countries are more “remote” from economic activity and therefore
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exhibit a higher domestic share of expenditure, all else equal. This variation is absorbed by country

fixed effects, since remoteness is a time-invariant characteristic. Conditional on these fixed effects,

we find that greater spatial correlation reduces the covariance of the domestic share of expenditure

and productivity.

To examine our prediction with realistic productivities and trade costs, we simulate a global

economy made up of 158 countries whose geographic coordinates, cereal yields, and crop areas

are their 1961-2013 averages in our data. We impose distance-related trade costs and swap pairs

of countries’ productivity levels in order to vary spatial correlation without altering the mean or

variance of the productivity distribution. We recover the covariance of expenditure and productivity

in each equilibrium by regressing the domestic share of expenditure for country i at “time” t,

where each t denotes an equilibrium associated with a different productivity distribution, on its

own productivity and fixed effects:

lnλiit = βt lnAit + πIi + πTt + µit. (6)

As in the right panel of Figure 6, the country fixed effects πIi control for differences in countries’

time-invariant determinants of the domestic share of expenditure, such as size and remoteness. The

“year” fixed effects πTt control for differences in the average domestic shares of expenditure across

different spatial distributions of productivity.

The coefficients βt in equation (6) characterize the conditional covariance of lnλii and lnAi in

each equilibrium. Since the equilibrium value of lnλii depends on the entire vector of productivities

and not just lnAi, as shown by the gravity equation (1), this covariance differs across equilibria.

Relating the general-equilibrium elasticity βt to properties of the exogenous productivity vector

shows how this covariance’s contribution to welfare inequality depends on properties of the produc-

tivity vector. Figure 7 shows that this covariance exhibits a negative and roughly linear relationship

with Moran’s I, a statistic that summarizes the spatial correlation of productivity. On this realistic

geography, when productivity is less spatially correlated, the equilibrium covariance of lnλii and

lnAi is more positive and thus welfare inequality is lower.

While the line of best fit in Figure 7 is not perfect, the Moran’s I statistic aptly summarizes

how the spatial structure of productivity affects welfare inequality. In the model, the covariance

of productivity and gains from trade is determined by the general-equilibrium solution of a system

of non-linear equations. In Appendix Figure E.1, we examine how well relating this covariance to

Moran’s I for productivity captures changes in the variance of welfare per capita. For each of the

equilibria depicted in Figure 7, we compare the variance of welfare per capita in the model to that

predicted by using the line of best fit. Regressing variance of welfare per capita in the model on

its predicted value yields an R2 of .93. Thus, a log-linear specification employing Moran’s I aptly

captures how welfare inequality determined by the general-equilibrium model depends on the spatial

structure of productivity. Our empirical investigation will therefore estimate the expenditure-

productivity relationship using a linear regression and exogenous variation in productivities without
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Figure 7: Real-world geography and bilateral productivity swaps
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Notes: Each observation is the estimated productivity elasticity of domestic expenditure share and spatial correlation
of productivity for the equilibrium resulting from a bilateral swap of two countries’ productivity levels. Countries’
productivities and factor endowments are set equal to their long-run averages of cereal yield and log crop area,
respectively. Bilateral trade costs are proportionate to bilateral distances between countries’ crop centroids. The
trade elasticity is set to 8.59 and the scale of trade costs is set so that the distance elasticity of trade is 1.46.
Equilibria computed for 7499 bilateral swaps of productivities. Linear fit shown as solid line. Local polynomial fit
for 1st through 99th percentiles of spatial correlation shown as dashed line. Equilibrium associated with long-run
averages shown as square.

imposing the full structure of a quantitative trade model.7

2.3 Comparative advantage

We have obtained these predictions about the spatial correlation of absolute advantage Ai using a

standard theoretical framework that makes two important assumptions about the pattern of com-

parative advantage. First, there is only one sector. Second, the pattern of comparative advantage

across varieties within that sector is symmetric across countries.

Our empirical investigation exploits exogenous variation in the spatial distribution of produc-

tivities in the agricultural sector, which constitutes a small share of global trade. What happens

7 An alternative strategy would be to calibrate the trade model to rationalize the observed data from one year
and then evaluate how well the fitted model predicts the following year’s outcomes when the spatial correlation of
productivity differs. One could match the next year’s observed productivities and compare observed expenditure
shares to predicted expenditure shares or match expenditure shares and compare productivities. Since other shocks
affect both variables, this alternative approach would still require the researcher to select the relevant exogenous
variation and define a criterion for evaluating model fit. Our instrumental-variables approach employs standard
statistical criteria to define appropriate exogenous variation and perform causal inference.
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in an economy with multiple sectors? Appendix A.3 shows that our prediction linking the spatial

correlation of productivity and the productivity-expenditure relationship holds for each sector in a

multi-sector gravity model of trade. When consumers have Cobb-Douglas preferences over sectors

and CES preferences over varieties within sectors, there are multi-sector analogues of equations

(2), (3), and (4) that sum over sectors using their expenditure shares. Thus, the previous section’s

predictions about trade in one sector can be empirically investigated in a multi-sector world that

introduces an additional dimension of comparative advantage.

Compared to a one-sector model, the opportunity to produce non-agricultural goods is an

additional margin of adjustment that can dampen the magnitude of the welfare consequence of a

given agricultural productivity shock. If agricultural and non-agricultural activities were positively

correlated, there would be little scope for adjustment.8 To illustrate the case in which these

productivities are orthogonal, Figure A.3 in Appendix A.3 presents a multi-sector analogue of Figure

5 for an economy with two symmetric sectors that differ only in their sine-wave frequency. The

idiosyncratic, orthogonal variation in the second sector’s productivity adds noise to the relationship

between the domestic share of agricultural expenditure and agricultural productivity, but it does

not change the comparative static of interest. When the first sector’s productivity is more spatially

correlated, the covariance of its log productivity and log domestic share of expenditure is smaller.

This raises dispersion in welfare relative to the case in which the first sector’s productivity is less

spatially correlated.

Finally, these results concern the spatial correlation of absolute advantage Ai when comparative

advantage is symmetric across countries. Standard quantitative trade models assume that the

pattern of comparative advantage is symmetric across countries. In Appendix A.4, we examine how

spatial correlation of comparative advantage may interact with the spatial correlation of absolute

advantage. Our thought experiment varies the spatial correlation of absolute advantage, holding the

pattern of comparative advantage fixed.9 When this pattern of comparative advantage is sufficiently

spatially correlated, an increase in neighboring countries’ total factor productivity may reduce a

country’s gains from trade. When neighboring countries specialize in similar products, a neighbor’s

productivity improvement may actually worsen a country’s terms of trade by increasing the world

supply of that country’s exports and thereby depressing its export price. Thus, if comparative

advantage were sufficiently spatially correlated, it would imply that βt in equation (6) would increase

with the spatial correlation of Ai. Our empirical estimates in Section 4 will reject this possibility.

8 Appendix A.3 shows that a multi-sector model with perfectly correlated productivities, proportionate bilateral
trade costs, and equal trade elasticities delivers a welfare-difference expression exactly proportionate to the single-
sector expression in equation (4).

9 Consistent with this assumption, column 2 of Table C.1 shows that the distance elasticity of trade is unaffected
by ENSO, our source of exogenous variation in the spatial correlation of absolute advantage. In the Eaton and
Kortum (2002) model, this elasticity embodies the pattern of comparative advantage.
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2.4 From theory to empirics

Section 2.2.3 shows that our prediction relating the productivity-expenditure relationship to the

spatial correlation of productivity can be estimated using a log-linear regression and appropriate

fixed effects. Appendix A.3 shows that this test can be conducted using a single sector in multi-

sector economy.

Our choice of empirical setting is guided by four criteria that must be met to investigate our

prediction. First, the sector’s bilateral trade flows should conform to the gravity equation that is

at the heart of quantitative trade models and decrease with distance. Second, examining the role

of the spatial correlation of productivity across a trade network requires a measure of productiv-

ity reported in comparable terms across the globe. Third, examining variation in global spatial

correlation requires sufficient time-series variation to identify its effects. Finally, the identifying

variation in productivities and their global spatial correlation needs to be plausibly exogenous to

support causal inference.

To satisfy these criteria, we study the cereals sector, which we define as the top eight cereals

that account for more than 99 percent of global cereal production and trade.10 With respect to

the first criterion, trade flows of cereals are well characterized by the gravity equation, as reported

in column 1 of Table C.1 in Appendix C.1. Cereals are often both exported to and imported

from the same foreign trading partner, and cereal trade between countries that are farther apart

is substantially lower. Cereals satisfy the second and third criteria because a standard measure of

productivity, cereal yield (the output-land ratio), is available at the country-year level with nearly

global coverage since 1961 from the United Nations Food and Agriculture Organization (FAO).

Our empirical investigation requires exogenous variation in national cereal productivities and

their global spatial correlation, our fourth criterion. In an ideal experiment, a researcher would

manipulate productivities around the world in a way that alters the global spatial correlation of

productivities without changing the global mean or variance of productivities. Such an experiment

is obviously not possible. However, because of the well-established sensitivity of cereal yields to

environmental conditions (Schlenker and Roberts, 2009; Hsiang and Meng, 2015), we are able to

approximate this ideal experiment by exploiting productivity variation attributable to temperature

variation and a global climatic phenomenon known as the El Niño-Southern Oscillation (ENSO),

described in the following section.

Finally, our analysis, following convention in international economics, ignores countries’ internal

economic geography. This abstraction is motivated by our empirical application. While there is also

annual variation in the within-country spatial correlation of cereal productivity, data constraints

10 These cereals are barley, maize, millet, oats, rice, rye, sorghum, and wheat. According to the FAO, these eight
cereals constituted 99.3% of global production (in metric tons) and 99.6% of global trade (in nominal USD) during
1961-2013. These cereals are not homogeneous goods. FAO data report quantities of wheat produced, but trade
data distinguish durum and non-durum wheat. Trade data distinguish four types of rice, but the International Rice
Genebank holds more than 125,000 rice varieties, which are differentiated by quality, appearance, and taste (Agcaoili-
Sombilla and Rosegrant, 1994). Quantitative trade models make common predictions about trade flows while making
different assumptions about the set of goods in the utility function. We study expenditure shares, so we need not
map our data sources’ product definitions to goods indexed by ω in the theoretical framework.

16

http://irri.org/resources/publications/brochures/the-international-rice-genebank
http://irri.org/resources/publications/brochures/the-international-rice-genebank


prevent us from measuring this variation and the relevant outcome variables within countries. Data

on agricultural productivity, internal trade, and population counts for subnational spatial units on

an annual basis have not been collected by most countries for most years. We therefore focus on

international trade and the spatial correlation of productivity across countries.

3 The El Niño-Southern Oscillation

This section first summarizes the basic physics of ENSO and then empirically demonstrates that it

drives annual variation in the global spatial correlation of cereal productivity.

3.1 Background

ENSO is a naturally occurring, annual climatic phenomenon characterized by mutually reinforcing

circulation patterns between the atmosphere and the tropical Pacific ocean. While ENSO originates

in the tropical Pacific, it is a major determinant of weather conditions around the world. Indeed,

at an annual frequency, ENSO is often recovered as the first principal component of various local

atmospheric or oceanographic variables across the planet (Sarachik and Cane, 2010).

ENSO is often colloquially described as consisting of one neutral state and two extreme states.

These conditions are broadly characterized by the amount of heat that is released from the tropical

Pacific ocean into the atmosphere (Cane and Zebiak, 1985). In typical “ENSO neutral” years,

normal circulation patterns pushing westward hold a pool of warm water against Indonesia and

other land masses in the South Pacific. A positive “El Niño” state occurs when this circulation

pattern weakens such that this pool of warm water spills eastward across a large area of the

equatorial Pacific Ocean. With warm water exposed to the atmosphere over a greater sea surface

area, El Niño years release more ocean heat into the atmosphere over a relatively short period. The

opposite occurs during the negative “La Niña” state. In La Niña years, stronger circulation patterns

push the same volume of warm water more firmly against the Indonesian landmass, reducing sea-

surface contact with the atmosphere and thus reducing heat released from the ocean. While these

three distinct states are descriptively convenient, there is in fact a continuum of ENSO conditions

corresponding to the amount of heat released into the tropical atmosphere.

ENSO conditions in the tropical Pacific affect the spatial pattern of weather conditions across

the planet due to how heat travels when released in the tropics. Because there is almost no Coriolis

effect near the equator (a result of the simple facts that the Earth is round and spins), atmospheric

signals propagate rapidly throughout the tropics. During a positive ENSO event, the warm air ini-

tially released above the tropical Pacific Ocean is propagated throughout the tropics by a transport

mechanism in the atmosphere known as an equatorial Kelvin wave that sweeps across the globe, al-

tering weather conditions almost simultaneously throughout the tropics (Chiang and Sobel, 2002).11

For this reason, it is often said that the tropical atmosphere is “teleconnected” during a positive

11 This tropical phenomenon is described in Hsiang and Meng (2015). For a complete scientific treatment of ENSO
physics, see Sarachik and Cane (2010).
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ENSO event, as atmospheric conditions in locations distant from each other are linked through this

mechanism. Because the equatorial Kelvin wave that connects local weather around the equator is

constrained primarily to the tropics, where the Coriolis effect is weak, the weather conditions that

prevail during a positive ENSO event do not generally extend to higher latitudes, which may in

fact experience opposing weather conditions because of changes to atmospheric circulation.

This physical mechanism allows ENSO to induce large areas of the planet to experience similar

local temperature, precipitation, humidity, and other weather conditions. The spatial consequences

of a positive ENSO event are perhaps best illustrated by temperature.12 During a positive ENSO

event, temperature conditions around the world are reorganized such that there is a spatially

contiguous area of relatively warm temperature across the tropics and subtropics while almost

simultaneously there is a spatially contiguous area of relatively cooler temperatures in higher-

latitude locations. The opposite occurs during negative ENSO events: less heat is released into the

atmosphere and temperatures across the globe are less spatially organized.

ENSO conditions are typically summarized by the average sea-surface temperature over a fixed

area in the tropical Pacific. In our main analysis, we employ the widely used NINO4 index, a

statistic defined as average ocean temperature (in degrees Celsius) over a rectangular area bounded

by 5◦S - 5◦N, 160◦E - 150◦W (see Figure E.2).13 Figure 8 plots this monthly ENSO index for

1856-2013, which extends further back than our estimation sample period of 1961-2013. There are

two important features of ENSO relevant for our empirical application: (i) the monthly timing of a

typical ENSO event and (ii) how an ENSO event influences local temperatures around the planet

both spatially and temporally.

Figure 8: Monthly ENSO index (1856-2013)
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Notes: Monthly ENSO index during 1856-2013. Shaded area shows our 1961-2013 sample period.

12 ENSO alters the spatial structure of other weather variables but these effects tend to be of smaller spatial scales.
For example, during positive ENSO events there is typically flooding over the Pacific coast of South America while
the Atlantic coast of South America primarily experiences droughts (Ropelewski and Halpert, 1987).

13 In robustness checks, we show that using other measures of ENSO yields similar empirical results.
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Due to ENSO’s tropical origins, the timing of ENSO events is phase-shifted relative to the calen-

dar year. Figure E.3 illustrates this timing by plotting the monthly ENSO index 12 months before

and after a given December for the 10 most positive ENSO events during 1961-2013. An ENSO

event generally begins during April-May of a given year and lasts until the following April-May, an

interval known as the “tropical year.” Because the ENSO index typically peaks in December, the

cleanest annual measure of any ENSO event is simply the December value of the ENSO index.14

In all following empirical analyses, we use December values as our annualized measure of ENSO.

A typical ENSO event affects local temperatures around the planet in a spatially and temporally

distinct manner. Figure 9 depicts the month-by-month structure of warming that occurs when the

ENSO index increases. Each map displays the time-series correlation of monthly temperatures for

each pixel during the specified month and ENSO in month zero, defined as December. Yellow,

orange, and red colors indicate locations that warm as the ENSO index increases; blues indicate

locations that cool. In the May before a December ENSO event (month -7), the east equatorial

Pacific begins to warm. Regions throughout the tropics, both over land and the oceans, continue to

warm for the next several months, peaking in the eastern Pacific in December (month 0) and over

the rest of the tropics in March and April (months +3 and +4). This warming then dissipates across

the tropics, with little effect visible more than a year after the December peak. Higher latitudes

experience some cooling through these months, though the effect is weaker. Figure 9 shows that the

local impacts on temperatures around the planet from a single ENSO event straddles two calendar

years. When using annual socio-economic data reported by calendar years, one must examine how

outcomes in a given year depend on both ENSO in that year and ENSO in the previous year.

3.2 ENSO and the spatial correlation of cereal productivity

The spatial and temporal patterns shown in Figure 9 suggest that ENSO could drive global spatial

correlation in cereal yields. Figure 10 shows country-level responses for log cereal yields to a 1-

degree increase in the sum of contemporaneous and lagged December ENSO indices.15 Consistent

with the tropical climatic dynamics discussed above, increases in the ENSO index tend to lower

cereal productivities in countries closer to the equator and raise cereal productivities in countries

farther from the equator. This pattern suggests an increase in the global spatial correlation of

cereal yields.

To quantify global spatial correlation within each year, we construct an annual Moran’s I

statistic for both country-level temperature and log cereal yields.16 Figure 11 shows a relationship

between ENSO and the global spatial correlation in temperature (left panel) and cereal productivity

14 This measure of ENSO is stationary and does not exhibit serial correlation. A Dickey-Fuller test strongly
rejects the presence of a unit root in favor of stationarity (p=4.15e-21). We do not detect any statistically significant
coefficients when estimating a time series regression of our annual December NINO4 measure of ENSO on a constant,
a linear trend, and five lagged terms with optimal bandwidth Newey-West standard errors.

15 Our country-by-year measure of aggregate cereal yield is the harvested area-weighted cereal-level yield across
the eight major cereals. See Appendix B for data details.

16 In our empirical applications, we use spatial weights ωij = 1/(dij + 1), where dij is the great-circle distance
between the two countries’ area-weighted centroids.
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Figure 9: Lead and lag local temperature correlation with December ENSO

Notes: Each panel shows pixel-level (0.5◦ latitude by 0.5◦ longitude resolution) correlation between the ENSO
index in December and pixel-level monthly temperatures for 11 months before (lead) and 12 months after (lag)
December. Blue shows areas with negative correlation. Red shows areas with positive correlation.
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Figure 10: ENSO’s effects on cereal yields

Notes: Map shows the linear coefficient on the sum of contemporaneous and lagged ENSO for each country’s log
cereal yield. Each country-specific time-series model includes a constant and a linear time trend.

(right panel). To characterize the ENSO phenomenon in terms of a scalar, we plot the sum of

December ENSO indices in years t and t − 1 on the horizontal axis and Moran’s I in year t on

the vertical axis. An increase in the ENSO index raises both the global spatial correlation in

temperature and log cereal productivity. ENSO, in this simple bivariate model, explains 11% and

12% of annual variation in the global spatial correlations of temperature and cereal productivity,

respectively.

Figure 11: Moran’s I for temperatures and cereal yields and ENSO
coef=0.003, se=0.001, R2=0.11
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Notes: Left (right) panel shows the relationship between Moran’s I of crop-weighted country-level temperature (log
cereal yields) in year t and the sum of contemporaneous and lagged December ENSO. Linear fit shown as solid line.
Local polynomial fit shown as dashed line.

To relax the timing simplification of Figure 11, Table 1 presents regressions of the annual

Moran’s I statistic for log cereal yields on flexible polynomial functions of December ENSO in

year t and t − 1. Each model includes a linear time trend and reports standard errors robust to

serial correlation and heteroskedasticity. In column 1, we include only linear contemporaneous

and lagged ENSO terms. Column 2 adds quadratic contemporaneous and lagged ENSO terms
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and a linear interaction term. Column 3 estimates the linear and quadratic effects for the sum

of contemporaneous and lagged ENSO. This more parsimonious specification effectively imposes a

common coefficient for ENSOt and ENSOt−1 and a common coefficient for ENSOt ×ENSOt−1,

ENSO2
t , and ENSO2

t−1. Two results are evident. First, both contemporaneous and lagged ENSO

affect the spatial correlation of cereal productivity but only after controlling for higher-order terms,

as shown in column 2. Second, compared with the model in column 2, column 3 produces a stronger

fit, as summarized by a lower Bayesian Information Criterion (BIC) value. As a consequence, all

empirics in Section 4 will use the functional form in column 3 to model the relationship between

ENSO and the global spatial correlation of cereal productivity as it strikes a balance between

allowing nonlinearity while limiting overfitting.

Table 1: Moran’s I in cereal productivity and ENSO
Outcome is Moran-I in log cereal yields

(1) (2) (3) (4)

ENSOt 0.008 0.008
(0.002) (0.002)
[0.000] [0.000]

ENSOt−1 0.003 0.005
(0.002) (0.002)
[0.121] [0.008]

ENSOt x ENSOt−1 0.004
(0.003)
[0.148]

ENSO2
t -0.001

(0.002)
[0.639]

ENSO2
t−1 0.004

(0.003)
[0.197]

(ENSOt + ENSOt−1) 0.006
(0.001)
[0.000]

(ENSOt + ENSOt−1)2 0.002
(0.001)
[0.070]

It(Tit) 0.541
(0.163)
[0.001]

BIC -275.84 -267.21 -276.63 -272.95
Observations 53 53 53 53
Notes: Time-series regressions of Moran’s I in log cereal yields on nonlin-
ear functions of contemporaneous and lagged December ENSO. All mod-
els include a linear time trend. Serial correlation and heteroskedasticity-
robust Newey-West standard errors with optimal bandwidth in parenthe-
ses (Newey and West, 1987); p-values in brackets.
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Columns 1-3 illustrate the overall effect of ENSO on the global spatial correlation of cereal

productivity. It is natural to wonder whether one could simply drive global spatial correlation of

cereal productivity using the global spatial correlation of temperature. This measure would capture

both ENSO and variation in local temperatures due to other climatic factors. Column 4 shows that

while annual Moran’s I in temperature is correlated with annual Moran’s I in cereal productivity,

it has poorer predictive power than ENSO, as reflected by a higher BIC statistic. This may be

because cereal yields depend on weather variables besides temperature, many of which become

more spatially correlated under a positive ENSO event. These other local weather channels are

captured by ENSO in columns 1-3 and not by the global spatial correlation of only temperature in

column 4. As a result, our regression results in the following section that use ENSO rather than

the spatial correlation of temperature are estimated more precisely.

Finally, consistent with our thought experiment in Section 2.1, ENSO appears to affect neither

the global mean nor the variance of cereal productivity, as shown by the left and right panels of

Figure 12, respectively. Moreover, when we estimate a gravity model that relates bilateral trade

flows to bilateral distances, column 2 of Table C.1 shows that the distance elasticity is invariant to

ENSO. This is consistent with the assumption, introduced in equation (4), that the trade elasticity

is invariant to the spatial structure of productivity.

Figure 12: Global cross-sectional mean and variance in cereal productivity and ENSO
coef=0.007, se=0.020, R2=0.002
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Notes: Left (right) panel shows the relationship between the mean (variance) of cross-sectional country log
cereal yields and the sum of contemporaneous and lagged December ENSO. Linear fit shown as solid line. Local
polynomial fit shown as dashed line.

4 Empirical results

The theoretical results in Section 2 suggest that the covariance between agricultural productivity,

lnAi, and the domestic share of expenditure, lnλii, should be lower when the spatial correlation

of productivity across the entire trading network increases. This section examines this relationship

empirically using exogenous temperature- and ENSO-driven changes in productivities and their

global spatial correlation. We first describe our estimation strategy, then report our main finding
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and subject it to a series of robustness checks. Appendix B details our data sources.

4.1 Estimation strategy

Following the logic of Section 2.2.3, we empirically estimate a variant of equation (6) that uses

Moran’s I to summarize the spatial structure of productivity. Figure 7 demonstrated that this

specification can capture most of the relevant variation generated by a quantitative trade model.

Specifically, for country i in year t during 1961-2013, we estimate the following regression equation:

lnλiit = β0 lnAit + β1 lnAitIt + Π′Zit + µit (7)

where λiit is country i’s domestic share of cereal expenditure in year t, constructed using FAO

output and trade data (see Appendix B). Ait is cereal yield, also from the FAO. It is the Moran’s I

statistic capturing the spatial correlation of lnAit for all countries in year t. Zit is a vector of semi-

parametric controls. In Section 2.2.3, we discussed how time-invariant country characteristics such

as size and remoteness could potentially generate omitted variable bias. We also noted that the

average domestic share of expenditure may differ across equilibria. We therefore include country

and year fixed effects in Zit. Zit also includes country-specific time trends. µit is an error term.

β0 and β1 are our two reduced-form parameters of interest. β0 captures the relationship between

a country’s gains from trade and productivity when productivity is spatially uncorrelated (when

Moran’s I is zero). β1 captures the degree to which the global spatial correlation of productivities

mediates this relationship between gains from trade and productivity.

β̂1 connects the spatial correlation of productivity to the global variance of welfare. β̂1 < 0

means that greater spatial correlation lowers the covariance of productivity and the domestic share

of expenditure. Since ENSO does not alter the trade elasticity ε (see column 2 of Table C.2), this

implies a lower covariance of productivity lnAi and the sufficient statistic for the gains from trade,
−1
ε lnλii. Greater spatial correlation of agricultural productivity causes more productive countries

to experience greater gains from trade and less productive countries to experience lower gains from

trade. Thus, all else equal, an increase in the spatial correlation of productivities increases global

welfare dispersion.

Estimation of equation (7) by ordinary least squares (OLS) may be problematic if expendi-

ture shares and productivity are simultaneously determined or if there are omitted determinants

of expenditure shares that are correlated with productivity, even after conditioning on Zit. For

example, demand shocks could affect expenditure shares and elicit supply responses that change

average yields. Similarly, if domestic cereal production employs imported intermediate goods, then

unobserved trade-cost shocks could jointly affect domestic cereal yields and the domestic share of

expenditure.

To address these potential sources of bias, we employ an instrumental-variables (IV) strategy

that exploits plausibly exogenous variation in local yields and the global spatial correlation of yields.

To drive local yields, we use country-level crop-area-weighted annual temperature, Tit, constructed
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from Legates and Willmott (1990a,b) (see Appendix B). As described in Section 3, global spatial

correlation of yields is driven by contemporaneous and lagged ENSO.

Our second-stage equation (7) has two endogenous variables, lnAit and lnAitIt. We instrument

for them using the following first-stage equations:

lnAit = α′11f(Tit) + α′12f(Tit)g(ENSOt + ENSOt−1) + Γ′1Zit + υ1it (8)

lnAitIt = α′21f(Tit) + α′22f(Tit)g(ENSOt + ENSOt−1) + Γ′2Zit + υ2it (9)

where the vector of semi-parametric controls, Zit, includes the same variables as our second-stage

equation (7). α′11, α′12, α′21, and α′22 are vectors of first-stage coefficients. f() captures the rela-

tionship between local temperature and yield; nonlinearity in f() is well documented around the

world (Schlenker and Roberts, 2009; Schlenker and Lobell, 2010; Welch et al., 2010; Moore and

Lobell, 2015). In particular, f() is modeled as a restricted cubic spline of local temperature; the

choice of the number of splines is detailed below. g() captures the relationship between ENSO and

the global spatial correlation of yields. Following the model-selection results in Table 1, g() is a

quadratic function of (ENSOt + ENSOt−1). υ1it and υ2it are error terms.

Nonlinear functional forms for f() and g() are necessary to capture nonlinearities in our first-

stage equations, but this means that we have more than two instruments for the two endogenous

variables. Two-stage least squares (2SLS) estimation in such over-identified IV settings can exac-

erbate issues with biased point estimates and incorrectly sized inference. These issues worsen if the

many instruments are also weak (Bound, Jaeger and Baker, 1995).

We address this concern using several weak-instrument diagnostics. First, we employ the limited

information maximum likelihood (LIML) IV estimator, which is approximately median-unbiased for

over-identified models (Mariano, 2001). Second, we conduct tests to detect weak instruments in our

LIML estimator. Third, we conduct inference that is robust to the presence of weak instruments.

4.2 Main results

To begin, consider OLS estimates of β0 and β1 from equation (7), reported in column 1 of Table 2.

The estimate of β0 is statistically precise and positive, but the OLS estimate of β1 is noisy and, in

fact, positive.

Columns 2 through 6 of Table 2 report IV estimates that address the potential bias of the OLS

estimates. Across columns, we vary the number of spline terms in the temperature function f().

Column 2 has 2 spline terms, the minimum needed to capture nonlinearity in f(). Each subsequent

column adds an additional spline term in f().17 Because all models include a quadratic function of

the sum of contemporaneous and lagged ENSO, this corresponds to 6, 9, 12, 15, and 18 instruments

used jointly across the first-stage equations (8) and (9).18 Panel A shows 2SLS estimates, while

17 2 to 6 spline terms correspond to 3 to 7 knots. Knots are placed between equally spaced percentiles of the
temperature empirical distribution according to Harrell (2001).

18 Columns 1-5 of Table F.2 show first-stage statistics for α′11 and α′12 from equation (8) and α′21 and α′22 from
equation (9), corresponding to the IV specifications shown in columns 2-6 of Table 2. They show p-values from F-tests

25



panel B shows LIML estimates. Because ENSO varies only in the time dimension, we cluster

standard errors by year to allow arbitrary forms of spatial correlation and heteroskedasticity across

countries within a given year. In robustness checks, we consider other error structures, including

the Bekker (1994) adjustment that accounts for LIML standard errors being potentially too small

in the presence of many weak instruments.

We first discuss our weak-instrument diagnostics. Across 2SLS estimates in columns 2 to 6 of

panel A, we consistently find similar point estimates for β̂0 > 0 and β̂1 < 0. 2SLS estimates for

both parameters are also statistically different from OLS estimates, suggesting that 2SLS estimates

do not exhibit the same bias as OLS and thus are not the result of completely uninformative

instruments. However, in over-identified IV settings, 2SLS estimates are still biased and incorrectly

sized. This is evident as the Cragg-Donald joint F-statistic for both first-stage regressions across

columns 2 to 6 is well below the Stock-Yogo critical values for 10% maximal 2SLS bias and size

(Cragg and Donald, 1993; Stock and Yogo, 2005).

To address these issues, columns 2 to 6 of panel B present LIML estimates. Again, we consis-

tently find similar point estimates for β̂0 > 0 and β̂1 < 0. The LIML estimates are even farther away

from the OLS estimates than the 2SLS estimates, suggesting that the LIML estimator mitigates

bias in our 2SLS estimates.

LIML is an approximately median-unbiased estimator in over-identified settings, but standard

errors may still be incorrectly sized in the presence of weak instruments. We show two tests to

address whether weak instruments are a concern. First, across columns 2 to 6, the Cragg-Donald

joint F-statistic for both first-stage regressions is above the Stock-Yogo critical values for 10%

maximal LIML size, which rejects the presence of weak instruments. However, Stock-Yogo critical

values are only valid for iid errors. While we also report the Kleibergen-Paap F-statistic, which

is more appropriate given our clustered error structure (Kleibergen and Paap, 2006), there are no

established critical values for non-iid errors. We therefore cannot entirely rule out the presence of

weak instruments solely by looking at first-stage F-statistics. Thus, we turn to inference methods

that are robust to the presence of weak instruments. For each IV model in columns 2 to 6, we

present the p-value from the Anderson-Rubin test of the null hypothesis that β0 and β1 in equation

(7) are jointly zero (Anderson and Rubin, 1949). This null hypothesis is strongly rejected. The

combined evidence from these various diagnostics suggests that weak instruments are not a concern.

This gives us confidence that our LIML estimates are unbiased and correctly sized.

Which number of spline terms in the temperature function f() yields the most informative esti-

mates of our parameters of interest? Note that this model selection is not crucial to our conclusions:

across columns 2 through 6, the point estimates of β0 and β1 do not vary much. All the estimates of

β0 have p-values near or below 0.01, and the LIML estimates of β1 have p-values ranging from 0.03

examining the joint significance of elements in each vector of first-stage coefficients. As expected, uninteracted local
temperature is consistently a strong predictor of local cereal yields in first-stage equation (8). For the interaction
between local yields and the global spatial correlation of yields in first-stage equation (9), both uninteracted local
temperature (i.e. 0th order ENSO) and local temperature interacted with ENSO (i.e. 1st and 2nd order ENSO) are
strong predictors.
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Table 2: Domestic share of expenditure and spatial correlation of productivity
Outcome is log domestic share of expenditure

(1) (2) (3) (4) (5) (6)
OLS IV IV IV IV IV

Panel A: 2SLS estimates

lnAit (β0) 0.284 1.541 1.746 1.696 1.701 1.654
(0.119) (0.515) (0.542) (0.412) (0.425) (0.431)
[0.021] [0.004] [0.002] [0.000] [0.000] [0.000]

lnAit × It (β1) 0.758 -3.321 -3.440 -3.391 -3.350 -3.290
(0.487) (2.071) (2.148) (1.476) (1.493) (1.555)
[0.126] [0.115] [0.115] [0.026] [0.029] [0.039]

Pct. change in welfare variance -0.353 1.536 1.591 1.568 1.549 1.521
from 1 s.d. increase in It (0.226) (0.976) (1.023) (0.716) (0.728) (0.754)

[0.119] [0.116] [0.120] [0.029] [0.033] [0.044]

Panel B: LIML estimates

lnAit (β0) 2.110 2.380 2.114 2.196 2.308
(0.837) (0.847) (0.604) (0.669) (0.771)
[0.015] [0.007] [0.001] [0.002] [0.004]

lnAit × It (β1) -4.530 -4.907 -4.144 -4.218 -4.463
(2.752) (2.937) (1.834) (1.949) (2.194)
[0.106] [0.101] [0.028] [0.035] [0.047]

Pct. change in welfare variance 2.091 2.264 1.914 1.948 2.060
from 1 s.d. increase in It (1.407) (1.497) (0.954) (1.035) (1.191)

[0.137] [0.131] [0.045] [0.060] [0.084]

Number of temperature splines in f() 2 3 4 5 6
ENSO polynomial order in g() 2 2 2 2 2
Number of instruments 6 9 12 15 18
Cragg-Donald F-stat 7.052 5.832 5.174 4.324 3.801
Stock-Yogo crit. value: 10% max 2SLS bias 9.480 10.430 10.780 10.930 11.000
Stock-Yogo crit. value: 10% max 2SLS size 21.680 27.510 32.880 38.080 43.220
Stock-Yogo crit. value: 10% max LIML size 4.060 3.700 3.580 3.540 3.560
Kleibergen-Paap F-stat 6.100 5.664 3.963 3.332 3.069
Anderson-Rubin weak-id robust joint p-value 0.000 0.000 0.000 0.000 0.000
BIC for first stage equations -30933.7 -30917.4 -31134.0 -31120.2 -31091.8
Observations 5452 5452 5452 5452 5452 5452

Notes: This table reports estimates of β0 and β1 from equation (7). Column 1 shows OLS estimates. Columns 2-6
show IV estimates that vary by the number of temperature spline terms in f(). Panel A (B) shows 2SLS (LIML)
IV estimates. All models include quadratic ENSOt +ENSOt−1 terms and incorporate country fixed effects, year
fixed effects, and country-specific linear trends as included instruments. Percentage change shown in the variance
of welfare for a one-standard-deviation increase in Moran’s I relative to the historical mean, with standard errors
calculated using the delta method. Standard errors, clustered by year, in parentheses; p-values in brackets.

to 0.11. To select one specification, we employ the Bayesian Information Criterion (BIC) statis-

tic from a joint seemingly unrelated regression of first-stage equations (8) and (9) to address the

trade-off between capturing nonlinearities in f() and having too many spline terms in f(). Table

2 shows that the BIC statistic is minimized with four temperature spline terms in column 4. This

corresponds to the specification with the most precise LIML estimates of β0 and β1, with p-values

of 0.001 and 0.03, respectively, and will serve as our benchmark model moving forward.

Our empirical estimates show that the spatial distribution of productivity affects a country’s
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terms of trade, as revealed by its domestic share of expenditure. The positive relationship between

its own productivity and domestic share of expenditure (β̂0 > 0) reveals that higher productivity

worsens the terms of trade. This deterioration is dampened when productivity is more spatially

correlated (β̂1 < 0), since higher productivity in neighboring countries improves a country’s terms

of trade.19

To quantify these estimates in welfare terms, suppose that the cross-sectional global spatial

correlation of agricultural productivity were to increase by one standard deviation relative to the

historical mean. Applying the expression for the variance of welfare in equation (3) to our bench-

mark LIML estimates in column 4, panel B of Table 2, we find that a one-standard-deviation

increase in the spatial correlation of productivity leads to a statistically significant 2% increase in

the global variance of welfare (see Appendix D.1 for details).20

4.3 Additional robustness checks

This section presents several robustness checks of our main empirical result. They are designed

to test the validity of our statistical assumptions, the interpretation of our results, and the con-

sequences of our data-construction choices. Our benchmark model throughout is that shown in

column 4, panel B of Table 2.

Randomization inference Our main source of identifying variation is global time-series fluctua-

tions in the ENSO cycle, as shown in Figure 8. While it is plausible that ENSO is uncorrelated with

unobserved determinants of domestic shares of expenditure over a large sample of years, spurious

correlations could occur within a 53-year sample.

To examine the relevance of this concern, we conduct a placebo test by randomly reshuffling

years in our panel data, breaking the time-series link between domestic shares of expenditure and

ENSO-driven changes in country-level cereal yields and the global spatial correlation in yields. This

allows us to obtain an empirical distribution of our estimated reduced-form coefficients, β̂0 and β̂1,

under placebo conditions and compute the probability of observing our benchmark estimates if

years were randomly assigned.

The left and right panels of Figure 13 show the empirical distribution for β̂0 and β̂1, respectively,

for 10,000 randomly reshuffled years without replacement. The vertical lines show the location of

our estimated β̂0 and β̂1 from the observed data. We find that it is highly unlikely that our main

result is due to small-sample bias.

Standard errors Standard errors are clustered by year in our benchmark model because ENSO

treatment occurs at the global time-series level. Table F.3 considers alternative error structures.

19 At empirically observed levels of spatial correlation, this does not reverse the positive relationship between lnAit
and lnλiit. As shown in Figure 11, the spatial correlation of cereal yields lies between 0.17 and 0.25 in our estimation
sample. Thus, β̂0 + β̂1 × It > 0 at all historical values of It for the estimates reported in Table 2.

20 As a point of comparison, Kopczuk, Saez and Song (2010) find that the annual variance of log earnings across
U.S. workers increased on average by 2% per year between 1970-2003.
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Figure 13: Randomization inference
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Notes: Empirical distributions of β̂0 (left panel) and β̂1 (right panel) from 10,000 random assignments of years.

Vertical lines show β̂0 and β̂1 from observed data estimated using benchmark model in column 4, panel B of Table 2.

Column 1 reproduces our benchmark results. To account for serial correlation, column 2 allows

year-level clustering and common serial correlation across countries within a 20-year rolling win-

dow following Driscoll and Kraay (1998). Column 3 allows differential serial correlation and het-

eroskedasticity across countries over our entire sample period by clustering standard errors by both

year and country. Allowing both forms of serial correlation has little effect on standard errors. Fi-

nally, if instruments are weak, standard errors from the LIML estimator may be too small (Hansen,

Hausman and Newey, 2008). Column 4 applies the Bekker (1994) adjustment to our benchmark

LIML estimates. This only slightly inflates our standard errors, which is unsurprising given that

the various tests in Table 2 do not suggest our instruments are weak.

Controlling for time-varying trade costs Our IV model correctly identifies β0 and β1 when

ENSO conditions influence a country’s domestic share of cereal expenditure only through its effects

on local yields and the global spatial correlation in yields.21 While it is unlikely that ENSO, as a

naturally occurring climatic phenomenon, is affected by economic activity, the exclusion restriction

could be violated if ENSO affects domestic cereal expenditure outside of its influence on cereal

yields. For example, a violation would occur if ENSO were to directly affect trade costs.

To address this potential violation of the exclusion restriction, Table F.4 augments our bench-

mark model with additional controls designed to capture time-and-country-varying trade costs.

21 For example, Hsiang, Meng and Cane (2011) show that warmer ENSO conditions increase the likelihood of civil
conflicts in the tropics over the same period. This relationship, however, need not imply an exclusion-restriction
violation. Suppose ENSO increases civil conflicts in the tropics only through lowered cereal yields. In that scenario,
civil conflict would serve as a “bad control” in our IV specification, potentially biasing our coefficients of interest
(see Angrist and Pischke 2009, p. 64-68). Our exclusion-restriction assumption is invalid only if ENSO increases
civil conflicts partially through non-agricultural channels and if civil conflicts affect domestic share of expenditure
by, for example, raising international trade costs relative to internal trade costs. Because the current climate-conflict
literature currently supports both agricultural and non-agricultural channels (Hsiang, Burke and Miguel, 2013), the
inclusion of conflict as a control would not deliver a unique interpretation: it either jeopardizes a valid identification
strategy or show that our instrumental-variable strategy is invalid.
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Column 1 replicates our benchmark result. In column 2, we add a country-year-varying proxy for

trade costs by interacting the global annual crude oil price with the country’s average log domestic

share of expenditure over our sample period. Column 3 uses an alternative measure of cross-

sectional trade openness by interacting the global oil price with a country’s centrality, measured

as the average of its inverse distance to every other country weighted by that trading partner’s

long-run average log agricultural output. In both cases, these proxies for trade costs do not mean-

ingfully alter our estimates of β0 and β1. Columns 4 and 5 provide more flexible specifications

by interacting year fixed effects with the two cross-sectional measures of trade openness used in

columns 2 and 3. Again, our coefficients of interest are relatively unaffected by the inclusion of

these controls, suggesting that unobserved shocks to trade costs are not correlated with our ENSO-

driven instruments. Cereals may be subject to export restrictions that are imposed in response to

productivity shocks. In column 6, we include a dummy variable that indicates if a country imposed

a new export restriction on cereals that year, using data from the UNCTAD TRAINS database.

Controlling for such export restrictions does not alter our result. ENSO also alters local precipi-

tation. If precipitation is also a determinant of trade costs, there may be an exclusion restriction

violation. In column 7, we include quadratic terms for total annual precipitation for each country

and find that it does not affect our result.

Large economies Our estimate of β̂0 > 0 implies that a positive productivity shock worsens an

economy’s terms of trade. This is at odds with the small-open-economy assumption that terms of

trade are exogenous to local conditions. Of course, some economies must influence world prices, but

since our estimating equation treats each country as an informative observation without weighting

by size, our results suggest that the “typical” economy is not small. To examine this more explicitly,

column 2 of Table F.5 excludes the ten largest economies that account for more than half of world

cereal production from our estimation sample. The resulting estimates of β̂0 and β̂1 are very

similar to our benchmark estimates. This finding is consistent with the idea that trade costs make

all markets “local”, so that no exporter is a price taker.

Sample split Table F.5 further examines whether β0 and β1 vary over our sample period. Column

3 shows estimates using the years 1961-1987, the first half of our sample period. Column 4 restricts

the years to 1988-2013, the second half of our sample period. While estimates from the second

half of our sample period are smaller in absolute magnitude than those from the first half, the

differences are not statistically significant.

Dynamic effects Table F.6 empirically estimates dynamic responses that the static model pre-

sented in Section 2 necessarily omits. Column 1 replicates our benchmark contemporaneous-

productivity specification for a sample in which t is restricted to 1962-2012, the sample period

that allows for both lead and lagged yields. Before discussing our lead and lagged results, it is

important to note that because current productivity is affected by ENSOt and ENSOt−1, we

would not expect lead productivity, driven in part by ENSOt, or lagged productivity, driven in
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part by ENSOt−1, to have a null effect on current domestic share of expenditure. Instead, the

absence of dynamics would produce lead and lagged effects that are muted compared with the

contemporaneous effect.

Improvements since the 1980s in the forecasting of strong ENSO events (Chen et al., 2004;

Shrader, 2017) could allow the domestic share of expenditure to respond to future ENSO-driven

cereal yields. To examine whether agricultural trade anticipates future ENSO events, column 2

tests for the effects of lead log yields, as instrumented by ENSO in years t + 1 and t and local

temperature in year t + 1. Lead effects are much smaller in magnitude than contemporaneous

effects and are not statistically significant.

Past yields might influence the domestic share of expenditure if past productivity affects con-

temporary productivity through intertemporal channels such as depletion of soil nutrients or if past

output is stored to facilitate current consumption. Cereal storage, in particular, has been shown

to facilitate consumption smoothing in many settings (Williams and Wright, 2005; Roberts and

Schlenker, 2013). We address this in two ways. Column 3 examines the effects of lagged log yields

generally, as instrumented by ENSO in years t − 1 and t − 2 and local temperature in year t − 1.

Compared with contemporaneous effects, lagged effects are smaller in magnitude and not significant

at conventional levels. Our standard measure of domestic expenditure is contemporaneous output

minus exports; this includes potential changes in stored cereal inventories. In column 4, we use a

measure of domestic expenditure that removes changes in cereal inventory using cereal storage data

from the FAO.22 The estimated coefficients are smaller in absolute magnitude than our benchmark

estimates; however, they are not statistically different.

Terms-of-trade interpretation To corroborate that our expenditure-share results reflect terms-

of-trade effects, in Appendix C.2 we regress a measure of the terms of trade on productivity and

spatial correlation. We find that an increase in productivity worsens a country’s terms of trade,

but this effect is dampened when productivity is more spatially correlated. This regression em-

ploys a revealed-preference measure of changes in the terms of trade that cannot be used to make

quantitative statements about welfare inequality.

ENSO and local temperature definitions Table F.7 considers alternative definitions of ENSO

and country-level local temperatures. Column 1, panel A reproduces our benchmark results using

the NINO4 measure as our ENSO index and crop-area-weighted country-level temperatures. In

columns 2, 3 and 4, we use NINO3, NINO34, and NINO12, alternative measures of ENSO that

differ by the spatial area over which average sea-surface temperature is calculated (see Figure E.2).

In panel B, we construct country-level temperature from pixel-level temperature data by taking

the pixel average across the total area of a country rather than weight by growing crop area.23 Our

22 This measure is contemporaneous output minus exports minus change in cereal inventory, where the latter is
defined as the difference in stored cereals in year t minus stored cereals in year t − 1. This implicitly assumes that
all stored cereals are domestically produced. The sample is smaller due to observations with missing storage data.

23 Our sample of countries increases slightly when using total-area-weighted temperature compared with using crop-
area-weighted temperature because a handful of small-sized countries have no agricultural activity in the Ramankutty
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results are largely unaffected by these two data-construction choices.

Our identification strategy need not require ENSO per se. Rather, one needs an exogenous

driver of the global spatial correlation of cereal yields that exhibits a sufficiently strong first stage.

In Table F.8, we report estimates produced by replacing g(ENSOt + ENSOt−1) in equations (8)

and (9) with the annual global spatial correlation of temperature, It(Tit). While the point estimates

in Table F.8 do not differ drastically from the corresponding estimates in panel B of Table 2, the

first stages are generally weaker. This is consistent with Table 1, which shows that It(Tit) does

not predict the global spatial correlation of cereal yields as strongly as ENSO. In short, ENSO

is preferred to the spatial correlation of an intermediate local weather variable as the source of

exogenous variation in the global spatial correlation of cereal yields on the basis of the strength of

the first-stage relationship.

Domestic expenditure share construction As detailed in Appendix B, we do not observe

cereal prices for all cereal-country-year observations with positive cereal output. Our benchmark

measure of domestic share of expenditure imputes missing cereal-level prices using the average

export-volume-weighted cereal export unit value for that country and year. While this imputation

increases the number of observations in our estimation sample, this procedure could bias our es-

timates if it introduces measurement error into our outcome variable that is correlated with our

instrumented regressors.

Table F.9 considers alternative approximations for the domestic expenditure share. Column

1 reproduces our benchmark result. Columns 2 through 4 consider alternative price imputations.

Column 2 imputes missing export unit values using producer prices.24 Columns 3 and 4 impute

missing cereal prices using the lowest and highest observed export unit values, rather than the

average, for a given country and year. All three alternative imputation methods yield estimates of

β0 and β1 that are statistically indistinguishable from the benchmark estimate in column 1. To see if

our benchmark result is sensitive to the source of trade data, domestic expenditure share in Column

5 uses bilateral trade data from Comtrade instead of FAO trade data. Finally, in column 6 we drop

observations where our benchmark measure of log domestic expenditure share is in the bottom and

top 1% of its unconditional distribution. Neither robustness check affects our conclusions.

5 Application: Inequality under future climate change

In this section, we demonstrate how to incorporate our general-equilibrium mechanism into reduced-

form analyses of economic outcomes when the global spatial structure of productivity changes.

Recent reviews of reduced-form studies of climate-change impacts emphasize the need to consider

general-equilibrium effects in projections of economic outcomes under climate change (Dell, Jones

and Olken, 2014; Hsiang, 2016; Auffhammer, 2018). To that end, we amend a standard reduced-

form approach for projecting climate impacts, which implicitly holds spatial correlation fixed, to

et al. (2008) dataset.
24See discussion in Appendix B regarding concerns with using FAO’s producer prices.
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incorporate changes in the spatial correlation of productivities due to climate change.25 By al-

lowing the expenditure-productivity relationship to depend on spatial correlation, this approach

introduces our general-equilibrium mechanism into a reduced-form framework without imposing

the full structure of quantitative trade models. This strategy is similar to that of Monte, Redding

and Rossi-Hansberg (2018), who use observables to account for heterogeneous local employment

elasticities implied by a quantitative model of commuting flows.

Because our exercise serves only to highlight the implications of incorporating this particu-

lar general-equilibrium mechanism, let us also emphasize that it omits other potential general-

equilibrium effects. First, with the exception of changes in cereal productivity due to climate-driven

changes in local temperature over the 21st century, we hold all other variables fixed at recent his-

torical values. Thus, we do not take into account important trends such as technological change.

Second, we apply estimates based on past exogenous annual changes in cereal productivity to future

long-term productivity changes due to climate change. This implies that we omit possible adap-

tations in anticipation of future climate change (Deschênes and Greenstone, 2007; Hsiang, 2016).

Third, we do not consider other potential adjustments such as factor reallocation across sectors

and across crops within the agricultural sector. All three practices are standard in reduced-form

analyses of climate impacts and may ultimately result in different realized climate impacts than

what we project. Our objective is merely to demonstrate how the general-equilibrium consequences

of spatial correlation can be incorporated into reduced-form projections of climate impacts. This

exercise helps bridge the gap between reduced-form approaches and structural models of climate

impacts (Brock, Engström and Xepapadeas, 2014; Desmet and Rossi-Hansberg, 2015; Costinot,

Donaldson and Smith, 2016; Krusell and Smith, 2016).

We first report climate change’s anticipated effects on the global variance and spatial correlation

of cereal productivity. We then show how incorporating these changes in the spatial correlation of

productivities affects welfare projections.

5.1 Cereal productivity under climate change

To examine how climate change will affect cereal productivity, we estimate a nonlinear log cereal

yield response function using historical variation in annual temperatures across countries and years.

Specifically, for the period 1961-2013, we estimate:

lnAit = k(Tit) + Ψ′Xit + νit (10)

where k() is a restricted cubic spline function and the benchmark set of controls in Xit include

country fixed effects, year fixed effects, and country-specific quadratic trends. Figure 14 shows the

estimated cubic spline response function, k(), using four temperature spline terms. It also shows

two cross-sectional temperature distributions: observed temperatures in 2013 and the forecast

25 There is currently no scientific consensus on how ENSO will be affected by anthropogenic climate change
(Stocker et al., 2013). Our projection exercise therefore assumes ENSO is stationary over the 21st century and does
not contribute to long-run changes in the global spatial correlation of cereal productivities.
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for 2099 under a business-as-usual (Representative Concentration Pathway 8.5) climate scenario

obtained from the Coupled Model Intercomparison Project (CMIP5) multi-model ensemble mean.26

Column 1 of Table F.10 shows that the coefficients of k() shown in Figure 14 are jointly statistically

significant with a productivity-maximizing temperature around 9◦C. Table F.10 also indicates that

the predicted optimal temperature is relatively insensitive to the number of knots in the spline

function and to the inclusion of precipitation controls. Next, we combine the estimated coefficients

in equation (10) with local temperature projections under a business-as-usual climate scenario to

project log cereal yields in the 2014-2099 period. All other variables in equation (10) are fixed at

2013 levels (see Appendix D.2 for details).

Figure 14: Estimated temperature response function for log cereal yields
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Notes: Gray solid line shows k() in equation (10), the predicted relationship between crop-area-weighted
country-level temperature and log cereal yields, estimated during 1961-2013. Restricted cubic spline func-
tion is estimated using four spline terms with knots placed along the temperature support according to
Harrell (2001). Gray dashed line shows additional predicted log cereal yields using extrapolated tempera-
ture in 2099. Estimated model corresponds to column 1 of Table F.10. Orange line shows the distribution
of observed country-level temperature in 2013. Red line shows country-level projected temperature in
2099 from CMIP5 ensemble mean under a business-as-usual (RCP 8.5) scenario.

Climate change alters two important moments of the cross-country cereal productivity distri-

bution. First, the variance of cereal productivity increases. In 2013, of the 12 countries with

temperatures below the global productivity-maximizing temperature, 10 had productivities above

the cross-sectional mean (see Figure E.4).27 As temperatures increase under climate change, these

26 The Coupled Model Intercomparison Project is a coordinated effort by the climate-science community to har-
monize model runs across various climate models. The average climate projection across CMIP models is known as
the multi-model ensemble mean. CMIP5 was used to inform the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change (see Taylor, Stouffer and Meehl (2012) for details).

27 Figure E.4 shows that the unconditional relationship between log productivity and temperature is very similar
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countries with high relative productivity will gain further by moving towards the productivity-

maximizing temperature shown in Figure 14. Concurrently nearly all other countries will experi-

ence productivity losses as they move away from the optimal temperature. Because the gains from

climate change are experienced almost exclusively by relatively high-productivity countries, there

is a resulting increase in the cross-country variance of productivity, depicted by the black line in

the left panel of Figure 15.

Figure 15: Variance in climate-driven welfare over the 21st century

Notes: Left panel shows the change in the global variance (black line) and Moran’s I (blue line) of log cereal yields
over the 21st century under climate change. Right panel shows the change in the variance of welfare omitting (gray
line) and including (red line) changes in the spatial correlation of log cereal yields over the same period. Climate
projections from CMIP5 ensemble mean under a business-as-usual (RCP 8.5) scenario.

Second, as temperatures increase across the planet, the spatial correlation of cereal productiv-

ities increases. This is again due to the non-monotone yield response function shown in Figure

14 and the fact that surface temperatures are generally decreasing in distance to the equator.

Absent climate change, mid-latitude locations experience the productivity-maximizing tempera-

ture. Locations closer to and farther from the equator both generally exhibit lower yields. As

climate change increases temperatures across the globe, latitudes closer to the poles now expe-

rience the productivity-maximizing temperature, with less productive locations becoming more

bunched around the equator. This bifurcation of global agriculture into high-productivity poles

and a low-productivity band around the equator increases the spatial correlation of cereal pro-

ductivity.28 The resulting increase in Moran’s I for cereal productivity under climate change is

indicated by the blue series in the left panel of Figure 15.

to the conditional relationship depicted in Figure 14, k(Tit). Thus, we can describe how climate change alters the
variance and spatial correlation of productivity in terms of the nonlinear shape of k(Tit), even though productivity
incorporates other determinants contained in controls Ψ′Xit and residual νit from equation (10).

28 Additionally, the country-specific shift in temperature due to climate change is not spatially uniform. Because
of surface albedo changes due to polar ice melt, there is higher warming in the poles relative to lower latitude areas.
However, this latitude-dependent gradient is relatively small compared to the average global temperature change and
thus plays a second-order role in determining changes in the spatial correlation of productivity. For example, the
projected temperature change over the 21st century for Gabon, the country located closest to the equator, is 3.4◦C.
For Finland, the country located closest to the north pole, the projected temperature change is 2.9◦C.
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5.2 Welfare projections and changes in spatial structure

The change in the spatial correlation of cereal productivity due to climate change is consequential for

global welfare inequality. To demonstrate this, we combine projected local cereal productivity under

climate change with our benchmark estimates of β̂0 and β̂1 from Section 4 to project future domestic

shares of expenditure via equation (7) and welfare variance via equation (3) (see Appendix D.2 for

details). We consider two scenarios with different terms-of-trade effects.29 In the first scenario,

we fix the spatial correlation of temperature-predicted cereal productivities to its 2013 value. In

the second scenario, we allow climate change to increase the spatial correlation of productivities as

depicted by the blue series in the left panel of Figure 15.

The projected change in the variance of welfare over the 21st century is shown in the right panel

of Figure 15. The gray line shows the projection that omits changes in spatial correlation and the

red line shows the projection that include such changes. Omitting changes in spatial correlation,

the projected increase in the variance of cereal productivity generates a projected increase in the

variance of welfare. The projection that incorporates increases in the spatial correlation of cereal

productivity due to climate change predicts a 20% greater increase in welfare inequality between

2013-2099 compared to the projection that holds spatial correlation fixed.

Figure 16: Differences in projected welfare changes due to change in spatial correlation (2013-2099)

Notes: Map shows the difference in projected country-level welfare change over 2013-2099 between projections
that include and omit changes in spatial correlation. Climate projections from CMIP5 ensemble mean under a
business-as-usual (RCP 8.5) scenario.

How do the projections differ across countries? Figure 16 maps the difference between the two

projections.30 Including an increase in the spatial correlation of productivity causes the gains from

trade to be lower in less productive countries and higher in more productive countries than in a

projection that holds spatial correlation fixed. In particular, Figure 16 shows that most countries

29 In autarky, the variance of welfare would be proportionate to the variance of productivity. Since a productivity
increase is associated with worse terms of trade, an increase in the variance of productivity causes a smaller increase
in the variance of welfare when there is international trade.

30 See equation (D.14) at the end of Appendix D.3.

36



in Africa, and a few in Asia and South America have lower gains from trade in the projection that

incorporates changes in spatial correlation. This is because the relatively high local temperatures

that drive yield losses in these countries are compounded by similar temperatures simultaneously

experienced by neighboring countries. In the simplest terms, a key feature of climate change

is that it makes Ethiopia and Kenya less productive at the same time, lowering the gains from

trade compared to a scenario in which each country warms independently. By the same logic,

parts of Europe and North American have higher gains from trade when the projection includes

increases in spatial correlation. The relatively milder temperatures experienced by these countries

are accompanied by similar temperatures over neighboring locations.

Figure 17: Differences in welfare projections due to change in spatial correlation and projected
yield changes
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and omit changes in spatial correlation (from Figure 16) plotted against change in log cereal yields over 2013-
2099 under climate change. Countries are color-coded by continent. See Figure E.5 for the same plot with
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Figure 17 depicts climate-change forecasts for each country in terms of the predicted change

in cereal productivity and the difference in projected welfare from omitting the change in spatial

correlation shown in Figure 16 on the vertical axis. The vast majority of countries suffer a decrease

in cereal productivity as a result of increased temperature. As in Figure 16, the strongest contrast

in Figure 17 is between outcomes for African and European economies. While there is substantial

heterogeneity in the productivity declines across countries within each continent, most economies
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in Africa, and a few in South America and Asia, experience productivity losses that would be

considerably amplified by changes in spatial correlation. By contrast, most European economies

have reduced projected welfare losses when the change in spatial correlation is incorporated. For the

few economies with increased productivity under climate change, the differences across projections

are close to zero.

6 Conclusion

This paper studies how the spatial structure of the global productivity distribution shapes the

distribution of welfare across countries. In particular, we use a standard trade model with distance-

related trade costs to show that, holding the unconditional moments of the productivity distribution

fixed, greater spatial correlation of productivity can increase welfare inequality. The increase in

spatial correlation causes high-productivity locations to enjoy larger gains from trade than they

would if productivity were spatially uncorrelated. In settings in which welfare differences are

arbitraged away by mobile factors of production, greater spatial correlation of productivity would

make population density, rather than welfare per capita, more unequal across locations.31

To empirically investigate this relationship, we exploit a global natural experiment that is well-

suited for identifying general-equilibrium effects caused by a change in the spatial structure of

productivity. Specifically, we use the El Niño-Southern Oscillation, a naturally occurring global

climatic phenomenon, which exogenously alters the annual spatial correlation of cereal productivity

around the planet. We examine how the spatial correlation of cereal productivity governs the

response of the domestic share of expenditure, a sufficient statistic for the gains from trade in

a broad class of trade models, to local productivity. Using data from the past five decades of

cereal trade, we find that high-productivity countries enjoy larger gains from trade when cereal

productivity is more spatially correlated, as predicted. More broadly, our empirical approach

advances the use of causal-inference techniques to validate general-equilibrium predictions.

In our application, we demonstrate that incorporating changes in the spatial correlation of

productivities substantially alters predictions about global welfare inequality when forecasting the

consequences of anthropogenic climate change. This interplay between the spatial structure of

productivity and welfare inequality is potentially important in many other domains. Many de-

terminants of productivity - such as demographics, political institutions, and natural endowments

- tend to exhibit substantial spatial correlation. For natural endowments in particular, spatial

correlation may change following the relocation of existing endowments (e.g., migrating wildlife

stocks), the discovery of new uses for them (e.g., solar and wind availability), or the discovery of

new endowments (e.g., fossil fuel deposits). This paper provides a framework for analyzing the

general-equilibrium welfare consequences of such widespread productivity changes.

31 Appendix A.5 proves that this is the case for a symmetric geography with four locations.
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Appendix – For Online Publication

A Theory appendix

A.1 General economic environment

This appendix section provides details of perfect-competition results presented in Section 2 and

extends them to the Krugman (1980) model of monopolistic competition.

A.1.1 Perfect-competition microfoundations

Production function. In the Armington model, each country i produces a distinct variety using

a linear production technology such that one unit of labor yields Ai units of output. Under perfect

competition, its price is wi/Ai and thus the Dixit-Stigliz price index is Pj =
(∑N

i=1 (wiτij/Ai)
1−σ
)1/(1−σ)

.

In the Eaton and Kortum (2002) model, there is a continuum of varieties, and each country’s effi-

ciency in producing them follows a Fréchet distribution with location parameter Ti and dispersion

parameter ϑ.

Gravity equation. Written in terms of expenditure shares, the gravity equation is

λij =
χi (τijwi)

−ε∑N
l=1 χl (τljwl)

−ε

In the Armington model, ε = σ−1 and χi = Aεi . In the Eaton-Kortum model without intermediate

inputs, ε = ϑ and χi = Ti. Thus, the equilibrium trade flows associated with a productivity

distribution {Ai}i and trade elasticity ε in the Armington model are equal to the equilibrium

trade flows for an Eaton-Kortum model in which efficiency distributions have location parameters

Ti = Aεi .

Welfare. Equation (2) is an immediate consequence of the main result in Arkolakis, Costinot

and Rodŕıguez-Clare (2012). They show that, in a broad class of models, the gains from trade

relative to autarky are equal to −1
ε lnλii. In our theoretical environment, autarky welfare is equal

to lnAi + γ, as implied by equation (2). γ is a function of structural parameters. In the Arm-

ington model with symmetric preferences, γ is zero. In the Eaton and Kortum (2002) model,

γ =
[
Γ
(
1 + 1−σ

θ

)]1/(1−σ)
where Γ is the gamma function.

A.1.2 Krugman (1980) microfoundations

We now discuss the case of monopolistic competition with homogeneous firms, in which the measure

of varieties available in equilibrium is endogenously determined. Consider a many-country version of

the Krugman (1980) model in which fixed costs fj and marginal costs cj may vary across countries.

Denote the equilibrium number of homogeneous firms producing in country j by nj .

Gravity equation. In the free-entry equilibrium, ε = σ − 1, ni = Li/ (σfi), and χi = nic
−ε
i .
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Welfare. In this setting, real per capita consumption is

ln (Ci/Li) =
1

ε
lnni − ln ci + ln

(
σ − 1

σ

)
− 1

ε
lnλii

If population size Li and fixed costs fi are country-invariant (ni = n ∀j) and we interpret

productivity as shifting marginal costs, Ai = c−1
i , then this is equivalent to equation (2) with

γ = 1
ε lnn + ln

(
σ−1
σ

)
. If population size Li and marginal costs ci are country-invariant and we

interpret productivity as shifting fixed costs, Ai = f
−1/ε
i , then this is equivalent to equation (2)

with γ = 1
ε ln (L/σ) + ln

(
σ−1
σc

)
.

In the case of countries with heterogeneous population sizes, equation (2) must be extended to

replace γ with a location-specific γi that depends on structural parameters other than productivity.

For example, if productivity shifts marginal costs, Ai = c−1
i , then we obtain

ln

(
Ci
Li

)
= lnAi + γi −

1

ε
lnλii, (2′)

where γi = 1
ε lnni + ln

(
σ−1
σ

)
. If we assume that cov(lnAui , γi) = cov(lnAci , γi), we obtain an

extension of equation (4):

var (lnCci /Li)− var (lnCui /Li) = −2

ε
[cov (lnAci , lnλ

c
ii)− cov (lnAui , lnλ

u
ii)]

− 2

ε
[cov (γi, lnλ

c
ii)− cov (γi, lnλ

u
ii)]

+
1

ε2
[var (lnλcii)− var (lnλuii)] . (4′)

A.1.3 The case of symmetric trade costs

Starting from the equilibrium system of equations and using the assumption of symmetric trade

costs (τij = τji):

Yi = wiLi =
∑
j

(
wi
Ai

)−ε
τ−εij

wjLj
Φj

=

(
wi
Ai

)−ε
Ωi

⇒ wi
Ai

=

(
Ωi

AiLi

) 1
ε+1

⇒ Φi =
∑
j

τ−εji

(
wj
Aj

)−ε
=
∑
j

τ−εji (AjLj/Ωj)
ε
ε+1

=
∑
j

τ−εji (AjLj/Φj)
ε
ε+1

The last equality exploits the fact that we can normalize incomes such that Φi = Ωi when trade

is balanced and τ−εij is symmetric, as established in Anderson and van Wincoop (2003) and Head

and Mayer (2014).
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Combining λii = (wi/Ai)
−ε

Φi
, the above expression for wi/Ai, and the assumption of symmetric

trade costs yields the result that

λii =
(Ωi/(AiLi))

−ε
ε+1

Φi
= (AiLi)

ε
ε+1 Φ

− 2ε+1
ε+1

i

Thus, in the case in which Li = L ∀i, var(lnλii) = ε
ε+1cov(lnAi, lnλii) − 1+2ε

1+ε cov(ln Φi, lnλii).

Comparing these outcomes for productivity distributions Ac and Au in the case in which Li = L ∀i,

var(lnλcii)− var(lnλuii) =
ε

ε+ 1

[
cov(lnAci , lnλ

c
ii)− cov(lnAui , lnλ

u
ii)
]

− 1 + 2ε

1 + ε

[
cov(ln Φc

i , lnλ
c
ii)− cov(ln Φu

i , lnλ
u
ii)
]
.

A.2 Spatial correlation and the covariance of productivity and gains from trade

This appendix section contains the proof of the four-country case presented in Section 2.2.1 and

details the construction and parameterization of the illustrative examples presented in Section 2.2.

A.2.1 Four-country case

The proof of Proposition 1 follows.

Ac is more spatially correlated than Au

Proof. Recall that Moran’s I is given by:

I(lnA,W ) =
N∑

i

∑
j ωij

∑
i

(
lnAi − lnA

)∑
j ωij

(
lnAj − lnA

)∑
i

(
lnAi − lnA

)2
where ωij are spatial weights. Define the spatial weight matrix

{ωij} =


ω0 ω1 ω2 ω1

ω1 ω0 ω1 ω2

ω2 ω1 ω0 ω1

ω1 ω2 ω1 ω0


Thus, there is a one-to-one mapping between ωij and τij . ω1 is the spatial weight associated with

trade cost d1; ω2 is the spatial weight associated with trade cost d2.

The average log productivity is given by lnA = 1
2 ln ã. For the correlated state, lnAc =

(ln ã, ln ã, 0, 0), so the demeaned log productivity vector is equal to l̂nAc = (1
2 ln ã, 1

2 ln ã,−1
2 ln ã,−1

2 ln ã).

For the uncorrelated state, lnAu = (ln ã, 0, ln ã, 0) and l̂nAu = (1
2 ln ã,−1

2 ln ã, 1
2 ln ã,−1

2 ln ã).

lnAc is more spatially correlated than lnAu if and only if I(lnAc,W ) > I(lnAu,W ) ⇐⇒∑
i l̂nAci

∑
j ωij l̂nA

c
j >

∑
i l̂nAui

∑
j ωij l̂nA

u
j .
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The relevant terms are as follows:

∑
j

ωij l̂nAcj =

{
1
2 (ω0 − ω2) ln ã for i = 1, 2

−1
2 (ω0 − ω2) ln ã for i = 3, 4∑

i

l̂nAci
∑
j

ωij l̂nAcj = (ω0 − ω2) (ln ã)2

∑
j

ωij l̂nAuj =

{
1
2 (ω0 − 2ω1 + ω2) ln ã for i = 1, 3

−1
2 (ω0 − 2ω1 + ω2) ln ã for i = 2, 4∑

i

l̂nAui
∑
j

ωij l̂nAuj = (ω0 − 2ω1 + ω2) (ln ã)2

I(lnAc,W ) > I(lnAu,W ) ⇐⇒ ω0 − ω2 > ω0 − 2ω1 + ω2 ⇐⇒ ω1 > ω2.

Equilibrium for the correlated state: Ac = (ã, ã, 1, 1)

By symmetry, the equilibrium incomes and market access of countries 1 and 2 are identical, Y1 = Y2

and Φ1 = Φ2. Similarly, countries 3 and 4 have identical outcomes: Y3 = Y4 and Φ3 = Φ4. As

a result, the equilibrium incomes that solve Yi =
∑N

j=1 λijYj can without loss of generality be

characterized by the scalar x ≡ Y1/Y4, the relative income levels.

Y1 = λ11Y1 + λ12Y2 + λ13Y3 + λ14Y4 ⇒ x =
λ13 + λ14

1− λ11 − λ12

Equilibrium expenditure shares can be expressed as λij = AεiY
−ε
i τ−εij /Φj . Thus λijA

−ε
i Y ε

i =

τ−εij /Φj and

x =
τ−ε13 /Φ3 + τ−ε14 /Φ4

ã−εY ε
1 − τ

−ε
11 /Φ1 − τ−ε12 /Φ2

.

Using the facts that Φ1 = Φ2 = Y −ε1 ãε(1 + d−ε1 ) + Y −ε3 (d−ε2 + d−ε1 ) and Φ3 = Φ4 = Y −ε1 ãε(d−ε2 +

d−ε1 ) +Y −ε3 (1 +d−ε1 ), it can be shown that the equilibrium value of x is the solution to the equation

x2ε+1 +
d−ε2 + d−ε1

1 + d−ε1︸ ︷︷ ︸
≡rc

ãε
(
xε+1 − xε

)
− ã2ε = 0. (A.1)

Equilibrium for the uncorrelated state: Au = (ã, 1, ã, 1)

Analogous to the correlated state, this case can be solved by exploiting the facts that countries

1 and 3 have identical outcomes, Y1 = Y3 and Φ1 = Φ3, and countries 2 and 4 have identical

outcomes: Y2 = Y4 and Φ2 = Φ4. The equation that characterizes equilibrium relative income x is

x2ε+1 +
d−ε1 + d−ε1

1 + d−ε2︸ ︷︷ ︸
≡ru

ãε
(
xε+1 − xε

)
− ã2ε = 0. (A.2)

48



Note that 0 < rc < ru < 1 since d2
1 > d2 > d1 > 0.

Comparing equilibria

Equations (A.1) and (A.2) show that relative income in each equilibrium is given by the zeros of

the following generalized polynomial

R(x; r) = x2ε+1 + rãε
(
xε+1 − xε

)
− ã2ε

when r > 0 is evaluated at rc and ru, respectively. By Descartes’ rule of signs, R(x; r) has exactly

one real positive zero (for a given value of r) (Jameson, 2006).32 Denote this zero of R(x; r) by

x∗(r).

We prove that x∗(r) is decreasing by contradiction. Let r1 < r2 and denote by x∗1 and x∗2
their respective unique positive zeros. Suppose that x∗1 < x∗2. Consider the function F (x) =

R(x; r2)−R(x; r1) = (r2− r1)ãεxε(x−1). It is evident that F (0) = F (1) = 0, F (x) < 0 ∀x ∈ (0, 1),

and F (x) > 0 ∀x > 1. When evaluated at x∗1, F (x∗1) = R(x∗1; r2) − R(x∗1; r1) = R(x∗1; r2), since x∗1
is a zero of R(x; r1).

Note that R(x; r) is continuous in x and that R(0; r) < 0. Therefore, R(x; r2) < 0 ∀x ∈ (0, x∗2).

Since x∗1 ∈ (0, x∗2) by assumption, F (x∗1) = R(x∗1; r2) < 0. Since F (x) > 0 ∀x > 1, we conclude that

x∗1 ∈ (0, 1). We also know that ∀x > x∗1, R(x; r1) > 0 since R(x∗1; r1) = 0 and limx→+∞R(x; r1) =

+∞. Together, these results imply that R(1; r1) > 0. Yet, R(1; r1) = 1− ã2ε < 0 as ã > 1. Thus,

we have a contradiction. We conclude that r1 < r2 ⇒ x∗1 > x∗2.

Denote the equilibrium relative incomes by xc and xu. Since ru > rc, xu < xc. The ratio of

equilibrium incomes is greater in the correlated case. Since the countries are of equal size, the ratio

of equilibrium incomes x is also the more productive economy’s “double-factoral terms of trade”.

Thus, the more productive economies’ double-factoral terms of trade are greater in the correlated

case.

cov(lnAi, lnλii) is lower in the spatially correlated case

Proof. Equilibrium domestic shares of expenditure can be expressed as λii = AεiY
−ε
i /Φi. For the

correlated state Ac, Φ1 = Φ2 = Y −ε1 ãε(1 + d−ε1 ) + Y −ε3 (d−ε2 + d−ε1 ) and Φ3 = Φ4 = Y −ε1 ãε(d−ε2 +

d−ε1 ) + Y −ε3 (1 + d−ε1 ), so

λc11 = λc22 = Aε1Y
−ε

1 /Φ1 =
1

1 + d−ε1 + ã−εxεc(d
−ε
2 + d−ε1 )

=
1

(1 + d−ε1 )(1 + ã−εxεcr
c)

λc33 = λc44 = Aε3Y
−ε

3 /Φ3 =
1

1 + d−ε1 + ãεx−εc (d−ε2 + d−ε1 )
=

1

(1 + d−ε1 )(1 + ãεx−εc rc)

For the uncorrelated state Au, Φ1 = Φ3 = Y −ε1 ãε(1 + d−ε2 ) + 2Y −ε2 d−ε1 and Φ2 = Φ4 = Y −ε2 (1 +

32 It also has either 0 or 2 negative zeros that are obviously not of interest.
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d−ε2 ) + 2Y −ε1 ãεd−ε1 , so

λu11 = λu33 = Aε1Y
−ε

1 /Φ1 =
1

1 + d−ε2 + 2ã−εxεud
−ε
1

=
1

(1 + d−ε2 )(1 + ã−εxεur
u)

λu22 = λu44 = Aε2Y
−ε

2 /Φ2 =
1

1 + d−ε2 + 2ãεx−εu d−ε1

=
1

(1 + d−ε2 )(1 + ãεx−εu ru)

Thus, we obtain the following demeaned values of the log domestic shares of expenditure

l̂nλ11 = −1
2 [ln (1 + xεã−εr)− ln (1 + ãεx−εr)]

l̂nλ44 = −l̂nλ11

when evaluated at (rc, xc) and (ru, xu) for the two respective equilibria.

The covariance of productivity and the domestic share of expenditure is therefore

cov(lnAi, lnλii) =
−1

4
ln ã

[
ln
(
1 + xεã−εr

)
− ln

(
1 + ãεx−εr

)]
Recall that ε and ã are fixed parameters while x is a function of r. This covariance is positive

because ã > x.33

It can be shown that cov(lnAi, lnλii) is increasing in r.

dcov(lnAi, lnλii)

dr
∝ −

d ln
(

1+xεã−εr
1+ãεx−εr

)
dr

∝
(
ã

x

)ε
−
(x
ã

)ε
︸ ︷︷ ︸

>0

− rε
x

[
2 + xεã−ε + x−εãε

]
︸ ︷︷ ︸

>0

dx

dr︸︷︷︸
<0

> 0

Since ru > rc, the covariance of productivity and the domestic share of expenditure is lower

for Ac than Au. Thus, the covariance of productivity and the equilibrium gains from trade,

cov(lnAi,
−1
ε lnλii), is greater for Ac than Au.

var(ln(Ci/L)) is greater in the spatially correlated case

Proof. In both equilibria,

var(lnλii) =
2

4

(
l̂nλ11

)2
+

2

4

(
l̂nλ44

)2
=
(

l̂nλ11

)2
=

4ε2

(ln ã)2

(
cov(lnAi,−

1

ε
lnλii)

)2

.

Therefore

var(ln(Ci/L)) = var(Ai) + 2cov(lnAi,
−1

ε
lnλii) +

1

ε2
var(lnλii)

= var(Ai) + 2cov(lnAi,
−1

ε
lnλii) +

4

(ln ã)2

(
cov(lnAi,−

1

ε
lnλii)

)2

33 ã > x because x is the largest positive zero of R(x; r), R(x′; r) < 0 ∀x′ ∈ (0, x), and R(ã; r) = (1+r)(ã−1)ã2ε > 0.
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This is increasing in cov(lnAi,
−1
ε lnλii) if and only if

2 +
8

(ln ã)2
cov(lnAi,−

1

ε
lnλii) > 0 ⇐⇒ ln ã >

1

ε
ln

(
1 + ãεx−εr

1 + xεã−εr

)
This inequality is true. The triangle inequality for trade costs, d2 < d2

1, implies that ru < 1. If

r < 1 and ε ≥ 1, then R(
√
ã; r) ≤ 0.34 Thus, x∗(r) ≥

√
ã ∀r ∈ (0, 1). That implies the following

inequality:
1 + ãεx−εr

1 + xεã−εr
≤ ãεx−ε(1 + r)

xεã−ε(1 + r)
=

(
ã

x

)2ε

≤
(
ã√
ã

)2ε

= ãε

Thus, var(ln(Ci/L)) is increasing in cov(lnAi,
−1
ε lnλii).

E(ln(Ci/L)) is lower in the spatially correlated case

Proof. By equation (2), the difference in average welfare between the uncorrelated and correlated

states is

E(ln(Cui /L))− E(ln(Cci /L)) = − 1

4ε

4∑
i=1

[lnλuii − lnλcii] =
1

4ε
ln

(
4∏
i=1

λcii
λuii

)
.

Due to the symmetry of the problem, λc11 = λc22, λc33 = λc44, λu11 = λu33 and λu22 = λu44. Consequently,

E(ln(Cui /L))− E(ln(Cci /L)) =
1

2ε
ln

(
λc11λ

c
44

λu11λ
u
44

)
The following results were obtained in proving that cov(lnAi, lnλii) is lower in the spatially

correlated case:

λc11

λu11

=
1 + d−ε2

1 + d−ε1

1 +
(
xu
ã

)ε
ru

1 +
(
xc
ã

)ε
rc

λc44

λu44

=
1 + d−ε2

1 + d−ε1

1 +
(
xu
ã

)−ε
ru

1 +
(
xc
ã

)−ε
rc

Recall that rc =
d−ε1 +d−ε2

1+d−ε1

and ru =
d−ε1 +d−ε1

1+d−ε2

. It follows that 1+rc

1+ru =
1+d−ε2

1+d−ε1

and therefore

λc11

λu11

=
1 + rc

1 + ru
1 +

(
xu
ã

)ε
ru

1 +
(
xc
ã

)ε
rc

λc44

λu44

=
1 + rc

1 + ru
1 +

(
xu
ã

)−ε
ru

1 +
(
xc
ã

)−ε
rc

34

R(
√
ã; r) = ã

2ε+1
2 + rãε(ã

ε+1
2 − ã

ε
2 )− ã2ε = ãε

(
ã

1
2 + rã

ε
2 (ã

1
2 − 1)− ãε

)
≤ ãε

(
ã

1
2 + ã

ε
2 (ã

1
2 − 1)− ãε

)
= −ãε

(
ã
ε
2 − ã

1
2

)(
1 + ã

ε
2

)
≤ 0
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Combining the above expressions yields

λc11λ
c
44

λu11λ
u
44

=

(
1 + rc

1 + ru

)2 1 + ruV
((

xu
ã

)ε)
+ (ru)2

1 + rcV
((

xc
ã

)ε)
+ (rc)2

where V (·) denotes the function V (x) = x + x−1, which for x ∈ (0, 1) is greater than 2 and

decreasing. From proofs above, we know that 1 > ru > rc > 0 and ã > xc > xu > 1. Therefore

1 > (xc/ã)ε > (xu/ã)ε > 0 and V ((xu/ã)ε) > V ((xc/ã)ε) > 2. Now consider the ratio

Q(r) =
1 + rV

((
x∗(r)
ã

)ε)
+ r2

(1 + r)2 = 1 +
r

1 + r

(
V

((
x∗(r)

ã

)ε)
− 2

)
.

Since ru > rc > 0, we have ru

1+ru >
rc

1+rc . Combining this result with the fact that

V
((

xu
ã

)ε)− 2 > V
((

xc
ã

)ε)− 2 > 0 leads to Q(ru) > Q(rc). As a consequence:

λc11λ
c
44

λu11λ
u
44

=
Q(ru)

Q(rc)
> 1⇒ ln

(
λc11λ

c
44

λu11λ
u
44

)
> 0⇒ E(ln(Cui /L)) > E(ln(Cci /L))

A.2.2 Circular geography

Figures 4 and 5 present an illustrative example in which we parameterize Ai and τij on a circular

geography. As stated in the main text, N = 50, ε = 1, and Li = 1 ∀i. Countries have locations

given by li = π
N (2i− 1−N) for i = 1, . . . , N . Productivity lnAi has a mean value of 10 and

follows a sine wave with amplitude 1 and frequency θ.35 Bilateral trade costs are given by ln τij =

.8 ln(1 + ‖li − lj‖), where ‖li − lj‖ is the distance between locations i and j on the circle.

Figures 4 and 5 depict demeaned distributions. Table A.1 reports the means and variances of

countries’ welfare per capita under autarky and trade.

Table A.1: Outcomes for one-sector sine-wave economy

Frequency of lnA sine wave (θ) 1 2 3 4

Autarky welfare (lnA) mean 10 10 10 10
Autarky welfare (lnA) variance 0.510204 0.510204 0.510204 0.510204
Trading-equilbrium welfare (lnC/L) mean 12.2654 12.2769 12.2807 12.2836
Trading-equilbrium welfare (lnC/L) variance 0.298203 0.226274 0.203006 0.184882

Figure 6 introduces heterogeneous sizes to the parameterization used in Figures 4 and 5. Size

lnLi is the sum of a sine wave with mean value 10, amplitude 1, and frequency θL = 1 and Gaussian

35 The standard deviation of a sine wave is proportional to its amplitude and independent of its frequency. This is
true for both the function and our N -point discretization.
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noise ∼ N (0, 1).

Figure A.1 depicts the expenditure-productivity relationship in a circular geography with equal-

sized countries for three selected productivity vectors. These otherwise arbitrary productivity

distributions differ only in their spatial correlation. They were generated by shuffling a vector

lnA0 that was drawn from N (0, 1).

Figure A.1: Circular geography with equal-sized countries and arbitrary productivities
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Notes: This figure depicts the λii-Ai relationship in an economy with a circular geography for three randomly
generated productivity distributions. Geography, equal-sized locations, and trade costs are the same as in Figure 4.

A.2.3 Randomly generated geography

In Figure A.2, we examine how the relationship between productivity and domestic share of ex-

penditure depends on the spatial correlation of productivity in a randomly generated geography.

We draw N = 50 locations’ coordinates on a plane lj ∈ R2 from a standard normal distribu-

tion. We generate bilateral, distance-related trade costs using ln τij = τ ln (1 + dij), where distance

dij = ‖li− lj‖ is the Euclidean norm on R2 and τ is a positive scaling factor. Countries are of equal

size, Lj = 1 ∀j. The trade elasticity ε = 4.

To construct M productivity distributions that have identical first and second moments and

different spatial covariances, we employ a procedure that makes use of the eigenvectors of a trans-

formation of the spatial weight matrix. Let I denote the identity matrix and consider J = eeᵀ,

where e is the constant vector of ones. The object of interest is the matrix Π = CWC where C cor-

responds to the centering matrix: C = I− 1
N J and W is our spatial weight matrix. It can be shown

that the upper and lower bounds of Moran’s I are given by: λmax
N
W0

and λmin
N
W0

where λmax and
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Figure A.2: Random-geography economy
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Notes: This figure depicts how cov(lnλii, lnAi) varies with the spatial correlation of productivity, as measured by
Moran’s I, over a randomly generated geography. We vary the spatial distribution of productivity while holding the
first and second moments fixed. The elasticity of λii with respect to Ai is β̂t estimated from lnλiit = βt lnAit +πIi +
πTt + εit, as described in the text. See Appendix A.2.3 for parameterization details.

λmin denote the largest and the smallest eigenvalues of Π respectively and W0 =
∑N

i=1

∑N
j=1Wij .

More generally, Moran’s I will be equal to λi
N
W0

when evaluated at the ith eigenvector. It can also

be shown that the non-constant eigenvectors of Π are centered and have identical second moments.

With these eigenvectors in hand, we apply a translation Tc : v → v+ c with c ∈ R2
+ to the non-

constant eigenvectors of Π. We employ linear combinations of the strictly positive vectors produced

by this transformation to produce a set of M productivity distributions denoted (A1, . . . , AM ). By

construction, these productivity distributions have identical first and second moments but vary in

their spatial covariance as measured by Moran’s I.

A.3 Multiple-sector case

This appendix section provides details of the multi-sector economic environment summarized in

Section 2.3.

Preferences. Individuals in country i have preferences that are Cobb-Douglas over sectors

s = 1, . . . , S and constant elasticity of substitution (CES) within sectors. Thus, the relevant price

indices are

Pi =
S∏
s=1

Pαisis and Pis =

(∫
ωs

pi(ωs)
1−σsdωs

)1/(1−σs)
,

where αis ≥ 0 are expenditure shares (
∑S

s=1 αis = 1) and σs are sectoral elasticities of substitution
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across varieties.

Production. Productivity in country j in sector s is Ais.

Trade costs. Selling one unit to j from i in sector s requires producing τijs ≥ 1 units, with

τiis = 1.

Gravity equation. Denote sales from i to j in sector s by Xijs and j’s total expenditure by

Xj ≡
∑N

i=1

∑S
s=1Xijs. Across sectors, Cobb-Douglas preferences cause optimizing consumers to

spend αjs of their total expenditure in sector s, Xjs = αjsXj . Within each sector, CES preferences

result in the share of expenditure by j on goods from i in sector s taking the form of a gravity

equation:

λijs =
Xijs

Xjs
=

χis (τijswi)
−εs∑N

l=1 χls (τljswl)
−εs =

χis (τijswi)
−εs

Φjs
.

Equilibrium. In a competitive equilibrium, labor-market clearing, goods-market clearing, and

budget constraints are satisfied such that total income Yi = wiLi and sectoral income Yis = wiLis

satisfy Yis =
∑N

j=1Xijs, Yi =
∑S

s=1 Yis, and Xis = αisYi for all countries. The equilibrium system

of equations is

Yis =
N∑
j=1

λijsαjs

S∑
s′=1

Yjs′ .

In this environment, real consumption per capita is

ln

(
Ci
Li

)
=

S∑
s=1

αis

(
lnAis + γs −

1

εs
lnλiis

)
.

The first two terms,
∑S

s=1 αis (lnAis + γs), are per capita welfare in autarky, and the final term,

−
∑S

s=1
αis
εs

lnλiis, summarizes the gains from trade.

Dispersion in per capita welfare across countries thus depends on the exogenous variation in

productivities Ais and the endogenous variation in domestic shares of expenditure λiis. For the sake

of expositional brevity, assume that expenditures shares are common across countries, αis = αs ∀i
In that case, the variance of per capita welfare is

var

(
ln

(
Ci
Li

))
= var

(
S∑
s=1

αis lnAis

)
+ var

(
S∑
s=1

αis
εs

lnλiis

)
− 2

S∑
s=1

S∑
s′=1

αsαs′

εs′
cov (lnAis, lnλiis′)

To examine the role of spatial correlation, consider two productivity distributions – a correlated

state c and an uncorrelated state u. Assume that unconditional variance of the productivity

distributions is the same, var
(∑S

s=1 αis lnAcis

)
= var

(∑S
s=1 αis lnAuis

)
. The difference in welfare

dispersion then depends on the covariance of productivities and domestic shares of expenditure,

both within and across sectors, and between domestic shares of expenditure.
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var (ln (CciLi))− var (ln (Cui /Li)) = 2
S∑
s=1

S∑
s′=1

αsαs′

εs′

{
cov (lnAuis, lnλ

u
iis′)− cov (lnAcis, lnλ

c
iis′)

}
−

S∑
s=1

S∑
s′=1

αsαs′

εsεs′

{
cov (lnλuiis, lnλ

u
iis′)− cov (lnλciis, lnλ

c
iis′)

}
(A.3)

Just as in the single-sector case, for typical values of the sectoral trade elasticities, 2
αsαs′
εs′

is an

order of magnitude larger than
αsαs′
εsεs′

. Thus, the difference in welfare dispersion is governed by the

cov (lnAis, lnλiis′) terms, provided that the block of cov (lnAis, lnλiis′) terms is the same order of

magnitude as the block of cov (lnλiis, lnλiis′) terms.

Under what circumstances is studying differences in cov (lnAis, lnλiis) in one sector alone in-

formative about welfare dispersion? For simplicity, consider the two-sector case and three possible

relationships between the two sectors: perfectly correlated productivities, perfectly anti-correlated

productivities, and orthogonal productivities.

In the perfectly correlated case, there is little scope for adjustment across sectors, and thus

outcomes are similar to those obtained in the one-sector environment. In fact, if all sectors have

perfectly correlated productivities (Ais ∝ Ai ∀s), perfectly correlated spatial linkages (τijs ∝ τij ∀s),
and equal trade elasticities (εs = ε ∀s), then expenditure shares are equal across sectors, λijs = λij ,

and the difference in welfare dispersion in equation (A.3) is exactly proportionate to the single-

sector expression in equation (4).

If sectoral productivities are perfectly anti-correlated, then outcomes in one sector may be

exactly offset by outcomes in another, leaving welfare unchanged. That is, it is possible to construct

circumstances in which the sum of covariances of productivities and domestic shares of expenditure

within sectors is exactly the opposite of the sum of cross-sector covariances. Consider the two-sector

case with equal expenditure shares α1 = α2 = 1
2 ∀j and equal trade elasticities ε1 = ε2 = ε. If the

two sectors’ productivities are perfectly anti-correlated, such that lnAi1 +lnAi2 is a constant, then

it can be shown that
∑S

s=1

∑S
s′=1

αsαs′
εs′

cov (lnAis, lnλiis′) = 0. Thus, our predictions about trade

flows are valid, but the welfare consequences of these changes are fully offset by the non-agricultural

sector’s anti-correlated changes.

What about the orthogonal case? Figure A.3 depicts a two-sector sine-wave economy with two

symmetric sectors that differ only in their sine-wave frequency. Table A.2 reports the means and

variances of countries’ welfare per capita under autarky and trade. Compared to Table A.1, the

variance of autarky welfare is lower because autarky welfare is the simple average of two sectors’ (or-

thogonal) productivities with the same mean and variance. The mean trading-equilibrium welfare

is higher (the gains from trade are larger) in the multi-sector case due to gains from specialization

according to comparative advantage. This additional margin of adjustment also dampens the de-

gree to which greater spatial correlation of productivity in one of the two sectors affects the variance
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Figure A.3: Two-sector sine-wave economy: cov(lnλii1, lnAi1)
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Notes: This figure depicts the λiis–Ais relationship for s = 1 in a two-sector economy in which sectoral productivity
follows a sine wave with frequency θs. The two series depicted are frequencies θ1 = 1 and θ1 = 4 for the first sector.
The second sector has frequency θ2 = 10 in both cases. The two sectors have identical trade costs τijs, expenditure
shares αi1 = αi2 = 1

2
, and trade elasticities ε1 = ε2. The two lines are the line of best fit for each series. When

productivity is more spatially correlated (when θ1 is lower), cov(lnλii1, lnAi1) is lower. See Table A.2 in Appendix
A.3 for details of this example.

of welfare in the trading equilibrium, but our main prediction still holds in this multi-sector setting

with orthogonal productivities.

A.4 Spatial correlation of comparative advantage

This appendix section addresses how the spatial correlation of comparative advantage interacts

with the spatial correlation of absolute advantage.

To consider the role of spatially correlated patterns of comparative advantage, we extend the

Eaton and Kortum (2002) model, in which comparative advantage is symmetric across countries, to

have “continents” of countries with correlated relative productivities. The world economy consists

of N countries partitioned across k = 1, . . . ,K continents. Country i belongs to continent k(i) and

Table A.2: Outcomes for two-sector sine-wave economy

Frequency of lnA1 sine wave (θ1) 1 2 3 4

Autarky welfare (1
2 lnA1 + 1

2 lnA2) mean 10 10 10 10
Autarky welfare (1

2 lnA1 + 1
2 lnA2) variance 0.255102 0.255102 0.255102 0.255102

Trading-equilbrium welfare (lnC/L) mean 12.3610 12.3699 12.3721 12.3736
Trading-equilbrium welfare (lnC/L) variance 0.114255 0.097649 0.092189 0.087935
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Table A.3: Estimates of β1 and within-continent correlation 1− ρ

Within-continent correlation 1− ρ
K 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2 -0.101 -0.100 -0.097 -0.092 -0.083 -0.067 -0.046 -0.021 0.001 0.013
3 -0.101 -0.099 -0.096 -0.090 -0.080 -0.065 -0.045 -0.019 0.004 0.016
4 -0.101 -0.097 -0.092 -0.085 -0.074 -0.058 -0.037 -0.012 0.013 0.027

Notes: This table reports estimates of β1 obtained from the regression lnλiit = β0 lnAit + β1 lnAitIt + πIi +

πTt +µit on equilibrium outcomes from a simulated global economy with 50 countries as described in the text of

Appendix A.4. The correlation parameter ρk = ρ ∀k, the dispersion parameter is ϑ = 8.28 (Eaton and Kortum,

2002), and the level parameter lnTi follows a sine wave, as in Section 2.2.2, with θ = 1, . . . , 8. In the standard

model, 1− ρ = 0.

its productivity in good ω is zi(ω). We depart from Eaton and Kortum (2002) by assuming that

the vector of productivities (Z1, . . . , ZN ) is drawn from a multivariate nested Fréchet distribution:

F (z1, . . . , zn) = exp

−
K∑
k=1

 ∑
i:k(i)=k

(Tiz
−ϑ
i )

1
ρk

ρk
 ,

where the location parameter Ti governs the absolute advantage of country i and the dispersion pa-

rameter ϑ is common across countries. Parameters (ρ1, . . . , ρk) govern the degree of within-continent

correlation in productivities, which is decreasing in ρk. When ρk = 1 ∀k, these productivities are

independent, as in Eaton and Kortum (2002).

After considerable algebraic manipulations, it can be shown that the gravity equation for this

generalized productivity distribution is

λij =
(Ti(wiτij)

−ϑ)
1

ρk(i)∑
m:k(m)=k(i)

(Tm(wmτmj)−ϑ)
1

ρk(i)

Φk(i)j

Φj
,

where Φkj =
(∑

i:k(i)=k(Ti(wiτij)
−ϑ)

1
ρk

)ρk
and Φj =

∑K
k=1 Φkj .

To study the interaction of the spatial correlation of comparative advantage and the spatial

correlation of absolute advantage, we simulate a world economy with a symmetric geography and a

sine-wave productivity distribution, as in Section 2.2.2. We divide the 50 countries into two, three,

or four continents with ρk = ρ ∀k. As we increase within-continent correlation in comparative

advantage by lowering ρ from 1.0 to 0.1 in steps of size 0.1, we find that the effect of spatial

correlation in absolute advantage is initially dampened and then reversed. As reported in Table

A.3, for the highest values of 1 − ρ, the estimated β1 is positive. That is, for sufficiently high

within-continent correlation of comparative advantage, the cov(lnλii, lnAi) relationship depicted

in Figure 5 becomes steeper with greater spatial correlation of Ai, not flatter.
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Thus, our empirical estimate of β1 in equation (7) captures the effect of spatial correlation

in absolute advantage as mediated by the existing spatial correlation in comparative advantage.

Standard quantitative trade models have symmetric patterns of comparative advantage, in which

case β1 should be negative. If patterns of comparative advantage within cereals are very spatially

correlated, β1 could be positive.

A.5 Mobile labor

In an economic-geography model in which welfare differences are arbitraged away by mobile factors

of production (e.g., Allen and Arkolakis 2014), greater spatial correlation of productivity makes

population density, rather than welfare per capita, more unequal across locations. We demon-

strate this using a symmetric geography with four locations, akin to the first stylized example of

Section 2.2.1, in which the population of each location is endogenously determined. Locations’

productivities vary exogenously, and their amenities are identical.

Given four locations with trade costs given by equation (5), total population L, and an elas-

ticity of substitution σ, the endogenous populations {Li}4i=1 and welfare level W must satisfy two

equations:

Lσ̃i = A
σ̃(σ−1)
i W 1−σ

4∑
j=1

τ1−σ
ji A

(1−σ̃)(σ−1)
j Lσ̃j and L =

4∑
j=1

Lj ,

where σ̃ ≡ σ−1
2σ−1 . Let L denote the vector containing L1, . . . , L4, let T denote the (symmetric)

matrix of trade costs raised (element-wise) to the power 1
1−σ , and let A denote the 4-by-4 diagonal

matrix with {A1, . . . , A4} on the diagonal.

The equilibrium equation of interest can then be written as(
I− 1

W σ−1
Aσ̃(σ−1)TA(1−σ̃)(σ−1)

)
Lσ̃ = 0.

W σ−1 is the eigenvalue and Lσ̃ is the eigenvector of the matrix Aσ̃(σ−1)TA(1−σ̃)(σ−1).

Let Ac and Au denote diagonal matrices whose diagonal elements are (ã, ã, 1, 1) and (ã, 1, ã, 1),

respectively, with ã > 1. Also, let ā ≡ ãσ−1 > 1, d̄1 ≡ d1−σ
1 , and d̄2 ≡ d1−σ

2 .

Consider the eigenvalue λc = W σ−1
c and eigenvector Lσ̃c associated with A

σ̃(σ−1)
c TA

(1−σ̃)(σ−1)
c .

We can verify that the eigenvector Lσ̃c = (xc, xc, 1, 1) and the eigenvalue λc = ā1−σ̃(d1−σ
1 +d1−σ

2 )xc+

d1−σ
1 + 1 satisfy the equation of interest. This implies that the equilibrium value of xc is given by

ā1−σ̃(d̄1 + d̄2)x2
1 − (ā− d̄1 − 1 + ād̄1)x1 − (d̄1 + d̄2)āσ̃ = 0. (A.4)

Similarly, in the case of Au, consider the eigenvalue λu = W σ−1
u and the eigenvector Lσ̃u as-

sociated with A
σ̃(σ−1)
u TA

(1−σ̃)(σ−1)
u . We can verify that the eigenvector Lσ̃u = (xu, 1, xu, 1) and

the eigenvalue λu = 2ā1−σ̃d̄1x2 + d̄2 + 1 satisfy the equation of interest. This implies that the
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equilibrium value of xu is given by

2ā1−σ̃d̄1x
2
u − (ā− d̄2 − 1 + ād̄2)xu − 2āσ̃d̄1 = 0. (A.5)

The quadratic equations (A.4) and (A.5) each have one positive and one negative root. Re-

stricting attention to the positive roots, we can compare the relative sizes of xc and xu. It can be

shown that xc > xu.

The equilibrium values of Lc and Lc are

Lc =
L

2x
1
σ̃
c + 2


x

1
σ̃
c

x
1
σ̃
c

1

1

 and Lu =
L

2x
1
σ̃
u + 2


x

1
σ̃
u

1

x
1
σ̃
u

1

 .

It can then be shown that cov(lnAi, lnLi) is greater for Ac than Au because xc > xu. Thus, with

welfare equalized across locations, the productivity-population relationship is more positive when

productivity is more spatially correlated.

B Data sources and construction

Agricultural data Our cereal data cover barley, maize, millet, oats, rice, rye, sorghum, and

wheat. We use cereal-level measures of output (in metric tons, 1961-2013), yield (in metric tons

per harvested hectare, 1961-2013), trade quantity (in metric tons, 1961-2013), trade value (in

nominal USD, 1961-2013), producer prices (in nominal local currency, 1966-2013), and change in

storage (in metric tons, 1961-2013) for each country and year obtained from the FAO.36

Domestic share of expenditure aggregated across cereals c = 1, . . . , C for country i in year t is

λiit =

∑C
c=1Xciit∑C

c=1Xciit +
∑

j 6=i
∑C

c=1Xcjit

where Xcjit is the value of cereal c sold to i by j in year t. We observe Xcjit for j 6= i. We

must construct Xciit using data on output quantities, export quantities, and prices. Xciit = (qcit −
exportscit) · pcit, where qcit is domestic output quantity, exportscit is export quantity, and pcit is

domestic price.

There are two potential data sources for price pcit, neither of which are ideal. The first data

source is export unit values,
∑
j 6=iXcijt

exportscit
, which are observed when a country exports a cereal. Un-

fortunately, only 53% of the cereal-country-year observations in our sample with positive output

quantities have positive export quantities. The second price measure, producer prices in nominal

local currency, presents two challenges. First, producer prices are available for only 59% of the

cereal-country-year observations with positive cereal output. Second, due to resource constraints

36Available at http://www.fao.org/faostat/en/#data.
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at the time, the FAO did not standardize the collection of 1966-1990 producer prices as it did

for prices since 1991. As such, FAO warns against the combined use of the full 1966-2013 panel

and notes that the FAO is “not in a position to give any explanation for the existing differences”

between 1966-1990 and 1991-2013 producer prices.37 Thus, despite extensive efforts to convert

1966-1990 FAO producer prices into nominal US dollars, use of producer prices raises concerns.

In light of these limitations and to ensure sufficient statistical power in our estimation, we elect

to approximate domestic expenditure
∑C

c=1Xciit by domestic quantity times average export unit

value,
(∑C

c=1(qcit − exportscit)
)(∑C

c=1

∑
j 6=iXcijt∑C

c=1 exportscit

)
. This measure is available for every year that

a country exports at least one cereal, yielding a sizable estimation sample. This approximation

of domestic expenditure
∑C

c=1Xciit makes our outcome variable a noisy measure of the domestic

share of expenditure. Table F.9 shows results for alternative approximations of the domestic share

of expenditure. Our country-year measure of aggregate cereal yield is harvested area-weighted

cereal-level yield.

For several robustness checks, we use bilateral trade data from the U.N. Comtrade database.38

Comtrade data has the disadvantage of using cereal codes that differ from that used by the FAO.

As such, despite careful matching of cereal categories across the two datasets, we prefer to use

production and trade data that is consistently reported by the FAO. However, trade data at the

bilateral level is available from Comtrade starting in 1962, whereas it is only available from the

FAO starting in 1986. Thus, for the gravity equations estimated in Table C.1, we use Comtrade

bilateral trade data. As a robustness check, we show in column 5 of Table F.9 that our main result

is unaffected when we alternatively construct domestic expenditure share using Comtrade data.

We also use bilateral trade data from Comtrade to construct a measures of the change in a

country’s terms of trade each year. With many commodities, a country is better off if its initial net

export vector is more expensive at new prices than at old prices (Dixit and Norman, 1980, p.132).

Define the normalized net export vector for country i in year t−1 by a vector whose C×N elements

are exportscijt−1 and −exportscjit−1 for j 6= i multiplied by a scalar so that its norm is one.39,40

Define the accompanying price-change vector for country i in year t by a vector whose C × N

elements are ∆pcijt and ∆pcjit for j 6= i, where ∆ denotes the time difference operator. The change

in the terms of trade is the inner product of these two vectors, which we denote ∆ToTit, with

∆ToTit > 0 indicating an improvement in country i’s terms of trade. Our measure is imperfect

because the price-change element ∆pcijt is not observed if exportscijt = 0. Absent any further

information, we impose ∆pcijt = 0 for these elements.

37 See here: http://fenixservices.fao.org/faostat/static/documents/PA/PA_e.pdf
38 Available at https://comtrade.un.org
39 The scalar is 1∑

c,j |exportscijt−1|+|exportscjit−1|
. Absent the normalization, larger economies would mechanically

exhibit larger terms-of-trade changes.
40 Note that exportscijt−1 and −exportscjit−1 are distinct elements in this net export vector, so that the same

cereal imported and exported by the same country is not assumed to be a homogeneous good.
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ENSO index Annual ENSO variations can be detected using different indices, with the most

commonly used being equatorial Pacific sea surface temperature (SST) anomalies. We primarily

utilize 1960-2013 values of the monthly Kaplan NINO4 index which averages SST over the area

5◦S-5◦N, 160◦E-150◦W. For robustness checks in Table F.7, we also use the NINO3 (5◦S-5◦N,

150◦W-90◦W), NINO34 (5◦S-5◦N, 170◦W - 120◦W), and NINO12 (10◦S-0◦, 90◦W-80◦W) indices

(Kaplan et al., 1998).41

Historical temperature and precipitation Global temperature (in degrees centigrade) and

precipitation (in mm/month) variable constructed from monthly gridded global weather data at

a 0.5◦ latitude by 0.5◦ longitude resolution was obtained from the Center for Climatic Research

at the University of Delaware (Legates and Willmott, 1990a,b). 1960-2013 monthly data was first

spatially aggregated from pixel to country-level using cross-sectional crop-area weights in 2000 from

Ramankutty et al. (2008). For robustness checks in Table F.7, we also aggregate temperature from

pixel to country-level using total country area. Annual values are then constructed by averaging

January-December monthly values.

Projected temperature under climate change Global multi-model ensemble mean temper-

ature temperature (in degrees centigrade) from monthly gridded global data at the 2.5◦ latitude by

2.5◦ longitude resolution from the Coupled Model Intercomparison Project version 5 (CMIP5).42

2014-2099 monthly data was first spatially aggregated from pixel to country-level using cross-

sectional crop-area weights in 2000 from Ramankutty et al. (2008). Annual values are then con-

structed by averaging January-December monthly values.

Geography Country latitude and longitude are defined as crop area-weighted average using the

global cross-sectional distribution of crop area in 2000 from Ramankutty et al. (2008). Great-circle

distances between these country centroids are computed using the haversine formula.

Global oil prices Monthly West Texas Intermediate crude oil spot price obtained from the St.

Louis Federal Reserve for 1961-2013.43 Annual values are then constructed by averaging January-

December monthly values.

Export restrictions Export restrictions come from the United Nations Conference on Trade

and Development’s (UNCTAD) TRAINS database.44 To construct the dummy variable used in

column 6 of Table F.4, we employ all export-related measures (Chapter P of the International

Classification of Non-Tariff Measures), excluding export subsidies. The indicator equals one for

country-year observations in which a new restriction on exporting any cereal to any trading partner

was introduced.

41Available at http://iridl.ldeo.columbia.edu/SOURCES/.Indices/.nino/.EXTENDED/
42Available at https://climexp.knmi.nl/selectfield_cmip5.cgi
43Available at https://fred.stlouisfed.org/series/WTISPLC
44Available at http://trains.unctad.org
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Variables in Figure 1 and Table F.1 Country-level real GDP per capita, TFP, capital stock,

and human capital index in 2013 from Feenstra, Inklaar and Timmer (2015). Country-level po-

litical stability, rule of law, and corruption indices in 2013 from World Bank’s World Governance

Indicators.45 Time-invariant country-level distance to nearest coastline or river and soil suitability

for agriculture from Gallup, Sachs and Mellinger (1999).

C Additional empirical results

C.1 Gravity estimates for cereals trade

The theoretical model of Section 2 assumes that trade in cereals follows a gravity specification for

exporter i, importer j, and year t:

lnXijt = −ε ln τij + ln

(
χit
wεit

)
+ ln

(
Xjt

Φjt

)
(C.1)

Estimating this log-linear equation using bilateral trade flows in cereals results in patterns similar

to those found in aggregate trade flows (e.g., Head and Mayer 2014). Bilateral cereal trade flows are

available from Comtrade starting in 1962. We estimate a standard panel data model using bilateral

distance as a (time-invariant) source of variation in bilateral trade costs (τij) while employing

exporter-year (it) and importer-year (jt) fixed effects. As in our main model, standard errors are

clustered by year. Table C.1 reports the results. While the estimated distance coefficient of -1.5

shown in column 1 differs from the coefficient of -1.0 typically estimated for aggregate trade flows,

the regression exhibits the typical explanatory power, accounting for the majority of the variation

in cereal trade flows. In addition, 63% of countries that trade cereals in a given year both import

and export cereals that year. At the level of importer-exporter pairs, 19% of trading pairs sell cereal

in both directions. Thus, cereals are far from homogeneous commodities, and international trade in

cereals is well described by the gravity specification. In column 2, we examine whether ENSO affects

the trade elasticity ε by examining its effect on the distance elasticity.46 Specifically, we include

an interaction between bilateral distance and a quadratic function of the sum of contemporaneous

and lagged ENSO (i.e., ENSOt + ENSOt−1), the functional form for ENSO used for our main IV

results in Table 2. ENSO does not alter the distance elasticity.

C.2 Terms of trade

In this appendix section, we estimate how a country’s terms of trade change in response to changes

in its cereal productivity and changes in the interaction of its productivity and spatial correlation.

Appendix B introduces a measure of changes in the terms of trade, ∆ToTit, constructed using

changes in unit values of bilateral trade flows. It is imperfect because these unit values are only

45Available at http://info.worldbank.org/governance/wgi/#home
46 This is informative about the the trade elasticity per se to the extent that the distance elasticity of trade costs

is invariant to ENSO.
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Table C.1: Gravity regression for international trade in cereals

Outcome is log import value

(1) (2)

ln distanceij -1.460 -1.477
(0.046) (0.066)
[0.000] [0.000]

ln distanceij × (ENSOt + ENSOt−1) 0.037
(0.037)
[0.324]

ln distanceij × (ENSOt + ENSOt−1)2 0.004
(0.029)
[0.878]

Observations 102,787 102,787
R-squared 0.556 0.557
Country-level intra-industry trade share 0.628 0.628
Bilateral intra-industry trade share 0.185 0.185
Notes: The dependent variable is log annual bilateral (importer-
reported) cereal trade value from Comtrade. The data cover 1962-2013.
All models include importer-year and exporter-year fixed effects. Intrain-
dustry trade shares are fraction of country-year and country-pair-year
observations with positive exports and imports, conditional on positive
exports or imports. Standard errors, clustered by year, in parentheses;
p-values in brackets.

observed when exports are non-zero and are a noisy measure of prices. Its distribution is very

fat-tailed. For our full sample, the unconditional kurtosis for ∆ToTit is 3214, much higher than our

sample unconditional kurtosis for lnλiit of 18 or the kurtosis of a standard normal distribution of 3.

To address this, we drop observations in the tails of this distribution from some of our regressions.

This measure of changes in the terms of trade has strengths and weaknesses. It relies on a

revealed-preference argument, a much weaker assumption than the CES preferences assumed in

the theoretical framework in Section 2. On the other hand, use of ∆ToTit limits any inference

about the welfare consequences of trade to noting the sign of ∆ToTit. We therefore cannot make

quantitative statements about welfare inequality using this measure.

Our instrumental-variables model for the change in the terms of trade has the following second-

stage equation:

∆ToTit = ς0(lnAit − lnAit−1) + ς1(lnAitIt − lnAit−1It−1) +$i + ξit (C.2)

where $i is a country fixed effect and ξit is an error term. The terms-of-trade interpretation of our

main empirical results implies that ς0 < 0 and ς1 > 0. Our two first-stage equations are:
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lnAit − lnAit−1 = %′11(f(Tit)− f(Tit−1))

+ %′12(f(Tit)g(ENSOt + ENSOt−1)− f(Tit−1)g(ENSOt−1 + ENSOt−2))

+$1i + ϕ1it (C.3)

lnAitIt − lnAit−1It−1 = %′21(f(Tit)− f(Tit−t))

+ %′22(f(Tit)g(ENSOt + ENSOt−1)− f(Tit−1)g(ENSOt−1 + ENSOt−2))

+$2i + ϕ2it (C.4)

where ϕ1it and ϕ2it are error terms. This specification estimates how a country’s terms of trade

change in response to changes in its cereal productivity and changes in the interaction of its pro-

ductivity and spatial correlation. The $i fixed effects absorb country-specific common time trends

in productivity and terms of trade. f() is a restricted cubic spline function with 4 terms. g() is a

quadratic function.

Table C.2 reports estimates of this regression. The full-sample estimates in column 1 are

statistically indistinguishable from zero and have the wrong sign. Dropping observations in which

the dependent variable is in the top 1% or bottom 1% of values yields estimated coefficients that

have signs consistent with the results of Section 4. An increase in productivity worsens a country’s

terms of trade (ς0 < 0), but this effect is dampened when productivity is more spatially correlated

(ς1 > 0). When we drop the observations in the top 2.5% and bottom 2.5% tails of the dependent

variable’s distribution, these effects are estimated with much greater precision.

Table C.2: Terms of Trade
Outcome is change in terms of trade

(1) (2) (3)

∆ lnAit (ς0) 25,450.215 -209.251 -411.298
(26,548.512) (232.135) (181.614)

[0.342] [0.372] [0.028]
∆ lnAit × It (ς1) -45,796.848 935.580 965.897

(55,317.531) (633.897) (581.000)
[0.412] [0.146] [0.103]

Outliers adjustment None Drop 1% Drop 2.5%
Cragg-Donald F-stat 9.207 9.317 8.606
Stock-Yogo crit. value: 10% max LIML size 3.580 3.580 3.580
Kleibergen-Paap F-stat 3.142 3.831 3.737
Observations 4182 4100 3982
Notes: This table reports LIML estimates of ς0 and ς1 from equation (C.2). Column 2 drops
observations for which the dependent variable is in the top 1% and bottom 1% of values. Column 3
drops observations for which the dependent variable is in the top 2.5% and bottom 2.5% of values.
Standard errors, clustered by year, in parentheses; p-values in brackets.
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D Welfare calculations

This section details the welfare calculations in the main text.

D.1 Calculating historical variance of welfare effect

This section details the within-sample welfare calculation discussed in Section 4.2 and shown in

Table 2. Recall the expression for the variance of welfare in equation (3):

var (ln (Ci/Li)) = var (lnAi) + 2cov

(
lnAi,

−1

ε
lnλii

)
+ var

(
1

ε
lnλii

)
We employ this expression to quantify the magnitude of our reduced-form results in welfare terms.

Consider the following thought experiment: suppose the spatial correlation of productivity increases

from the 1961-2013 historical mean, Ī = .214, by one standard deviation, σI = .0191. What is the

resulting percentage change in the cross-sectional variance of welfare, holding everything else fixed?

We denote these two hypothetical states as uncorrelated state u and correlated state c.

For the uncorrelated state, we define variance productivity as the average cross-sectional pro-

ductivity variance during 1961-2013:

var(lnAui ) ≡ Et[vari(lnAit|t)] (D.1)

Next, we define covariance between productivity and domestic share of expenditure during the

uncorrelated state as the average cross-sectional covariance during 1961-2013:

cov(lnAui , lnλ
u
ii) ≡ Et[covi(lnAit, lnλiit|t)] (D.2)

We further define the variance of domestic share of expenditure during the uncorrelated states as

the average variance during 1961-2013:

var(lnλiiu) ≡ Et[vari(lnλiit|t)] (D.3)

Note that the values in definitions (D.1), (D.2), (D.3) can be directly computed from data since

lnAit and lnλiit are observed.

For the correlated state c, var(lnAci ) is also given by definitions (D.1) since we assume pro-

ductivity variance is unaltered by changes in spatial correlation. cov(lnAci , lnλ
c
ii) and var(λcii),

however, have to be calculated as one does not directly observe data from a year in which only

It = Ī + σI while everything else is fixed at the historical mean. To do this, first recall our

reduced-form expression for lnλit from equation (7):

lnλiit = β0 lnAit + β1 lnAitIt + Π′Zit + µit

Our estimates of this equation can be employed to construct each component of equation (3) for the
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correlated state. The covariance between productivity and domestic share of expenditure during

the correlated state is:

cov(lnAci , lnλ
c
ii) ≡ (β̂0 + β̂1(Ī + σI))Et[vari(lnAit|t)]

+ Et[covi(lnAit, Π̂
′Zit|t)] + Et[covi(lnAit, µ̂it|t)] (D.4)

The variance of domestic share of expenditure during the correlated state is:

var(lnλcii) ≡ (β̂2
0 + 2β̂0β̂1(Ī + σI) + β̂2

1(Ī + σI)
2)Et[vari(lnAit|t)]

+ Et[vari(Π̂
′Zit|t)] + Et[vari(µ̂it|t)]

+ 2(β̂0 + β̂1(Ī + σI))Et[covi(lnAit, Π̂
′Zit|t)]

+ 2(β̂0 + β̂1(Ī + σI))Et[covi(lnAit, µ̂it|t)]

+ 2Et[covi(Π̂
′Zit, µ̂it|t)] (D.5)

Each term in equations (D.4) and (D.5) is either directly observable or can be obtained by estimating

equation (7). For example, for the model estimated in column 4, panel B of Table 2, with β̂0 = 2.114

and β̂1 = −4.144, we have:

Et[vari(lnAit|t)] = .453

Et[vari(Π̂
′Zit|t)] = 1.04

Et[vari(µ̂it|t)] = .083

Et[covi(lnAit, Π̂
′Zit|t)] = −.497

Et[covi(lnAit, µ̂it|t)] = −.026

Et[covi(Π̂
′Zit, µ̂it|t)] = −.001

Applying equation (3), the percentage change in the variance of welfare in the correlated state,

relative to the uncorrelated state, is

var
(

ln
Cci
Li

)
− var

(
ln

Cui
Li

)
var(ln(Cui /Li))

=
var (lnAci )− 2

ε cov (lnAci , lnλ
c
ii) + 1

ε2
var (lnλcii)

var (lnAui )− 2
ε cov (lnAui , lnλ

u
ii) + 1

ε2
var (lnλuii)

− 1 (D.6)

To complete the calculation, let the agricultural trade elasticity be ε = 8.59 (Caliendo and Parro,

2015, Table A2). Values from equation (D.6) are shown in Table 2, with standard errors calculated

using the delta method.

D.2 Calculating change in variance of welfare under climate change

In Section 5.2, we calculate the percentage change in the variance of welfare between the end of our

estimation period, t̄ = 2013, and the end of our projection period, T = 2099, under climate change,

holding everything else fixed. Compared with the welfare calculation described in Appendix D.1

and reported in Table 2, there is an added complication: climate change also changes the variance
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of productivity.

To begin, recall equation (10) for lnAit during the estimation period, t ∈ [1961, 2013]:

lnAit = k(Tit) + Ψ′Xit + νit

Column 1 of Table F.10 shows coefficients for k̂() from our benchmark specification, which is also

plotted in Figure 14. Using estimates from equation (10) and our business-as-usual CMIP5 ensemble

mean projected temperatures under climate change, T̂it, we first compute country-year agricultural

productivity under climate change during the projection period t ∈ [2014, 2099], holding everything

but temperature fixed to estimated t̄ = 2013 values:

l̂nAit = k̂(T̂it) + Ψ̂′Xit̄ + ν̂it̄ (D.7)

In the left panel of Figure 15, the black line shows var(l̂nAit) while the blue line shows Moran’s I,

Ît computed using l̂nAit, for each projection year.

To compute the change in variance of welfare from the end of the estimation period, t̄ = 2013,

to any year during the projection period, t ∈ [2014, 2099], we difference equation (3):

var (ln(Cit/Lit))− var (ln(Cit̄/Lit̄)) = [var(l̂nAit)− var(lnAit̄)]

− (2/ε)[cov(l̂nAit), l̂nλiit)− cov(lnAit̄, lnλiit̄)]

+ (1/ε2)[var(l̂nλiit)− var(lnλiit̄)] (D.8)

We consider two scenarios for obtaining future domestic share of expenditure, l̂nλiit. In the first

scenario, the projection omits changes in the spatial structure in the sense that the spatial corre-

lation of productivities is fixed at its value at the end of the estimation period, It̄, throughout the

projection period. In the second projection, we allow climate change to alter the spatial correlation

of productivity.

Variance projection omitting changes in spatial structure Holding the spatial correla-

tion of productivity fixed, the domestic share of expenditure during the projection period, t ∈
[2014, 2099], is computed using our benchmark estimate of equation (7) from column 4, panel B of

Table 2:

l̂nλ
n

iit = (β̂0 + β̂1It̄)l̂nAit + Ψ̂′Xit̄ + µ̂it̄ (D.9)

Equations (D.7) and (D.9) allow construction of var(l̂nλ
n

iit) and cov(l̂nAit, l̂nλ
n

iit) for each year

in the projection period. These then enter into equation (D.8) to compute the change in welfare

variance since 2013 over the 21st century for the projection that omits changes in spatial structure.

That projected welfare variance is shown as the solid gray line in the right panel of Figure 15.

Variance projection including changes in spatial structure Allowing the spatial correla-

tion of productivity to vary under climate change, the domestic share of expenditure during the
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projection period, t ∈ [2014, 2099], is computed using our benchmark estimate of equation (7) from

column 4, panel B of Table 2:

l̂nλ
s

iit = (β̂0 + β̂1Ît)l̂nAit + Ψ̂′Xit̄ + µ̂it̄ (D.10)

Equations (D.7) and (D.10) allow construction of var(l̂nλ
s

iit) and cov(l̂nAit, l̂nλ
s

iit) for each year in

the projection period. These then enter into equation (D.8) to compute the change in welfare vari-

ance since 2013 over the 21st century for the projection that includes changes in spatial structure.

That projected welfare variance is shown as the solid red line in the right panel of Figure 15.

Difference across projections For the period from t̄ = 2013 to T = 2099, we calculate the

percentage difference in the change in welfare variance between projections that include and omit

changes in spatial structure:

var (ln (CsiT /L
s
iT ))− var (ln (Cit̄/Lit̄))

var
(
ln
(
CniT /L

n
iT
))
− var (ln (Cit̄/Lit̄))

− 1 (D.11)

When using baseline estimated parameters, and an agricultural trade elasticity of ε = 8.59 (Caliendo

and Parro, 2015, Table A2), we find that allowing climate change to alter the spatial correlation of

productivities predicts a 20% greater increase in welfare variance than when spatial correlation is

held fixed.

D.3 Calculating change in country-level welfare under climate change

From equation (2), the expression for welfare of country i in year t is

ln (Cit/Lit) = lnAit + γ − 1

ε
lnλiit.

For the projection period, the productivity of country i in year t, l̂nAit is given by equation (D.7).

Next, we calculate the difference in welfare projections for individual countries between projections

that include and omit changes in spatial structure.

Country welfare projection omitting changes in spatial structure Holding the spatial

correlation of productivity fixed, the other component of welfare during the projection period,

t ∈ [2014, 2099], is:

l̂nλ
n

iit = (β̂0 + β̂1It̄)l̂nAit + κ̂It̄ + Π̂′Zi,t̄ + µ̂it̄ (D.12)

where spatial correlation affects both the average domestic share of expenditure (κ) and its re-

lationship to domestic productivity (β1).47 The difference in country i welfare from t̄ = 2013 to

47 To obtain κ, we first recover year fixed effects from equation (7). κ̂ = 2.45 is the coefficient from a linear
regression of year fixed effects on It and a linear time trend.
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T = 2099 is:

ln(CniT /L
n
iT )− ln(Cit̄/Lit̄) = [l̂nAiT − lnAit̄]− (1/ε)

[
(β̂0 + β̂1It̄)(l̂nAiT − lnAit̄)

]
(D.13)

Country welfare projection including changes in spatial structure Allowing the spatial

correlation of productivity to vary under climate change, the other component of welfare during

the projection period, t ∈ [2014, 2099] is:

l̂nλ
s

iit = (β̂0 + β̂1Ît)l̂nAit + κ̂Ît + Π̂′Zi,t̄ + µ̂i,t̄

Similarly, the difference in country i welfare from t̄ = 2013 to T = 2099 is:

ln(CsiT /L
s
iT )−ln(Cit̄/Lit̄) = [l̂nAiT −lnAit̄]−(1/ε)

[
(β̂0 + β̂1ÎT )l̂nAiT − (β̂0 + β̂1It̄) lnAit̄ + κ̂(ÎT − It̄)

]
Difference across projections The difference in country welfare between projections that in-

clude and omit changes in spatial structure is:

[ln(CsiT /L
s
iT )− ln(Cit̄/Lit̄)]− [ln(CniT /L

n
iT )− ln(Cit̄/Lit̄)] = −(1/ε)[(β̂1 l̂nAiT + κ̂)(ÎT − It̄)] (D.14)

Figure 16 shows the country-level difference across projections.

E Appendix figures

Figure E.1: Welfare per capita, model vs approximation by linear regression
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Notes: For each equilibrium depicted in Figure 7, we compute equilibrium welfare per capita in the model (vertical
axis) and welfare per capita predicted by an estimated linear regression (horizontal axis). The regression specification
is akin to the line of best fit depicted in Figure 7, see equation (7). Predicted welfare per capita is computed by
plugging in predicted values of lnλii into equation (3). The R2 of the bivariate relationship is .93.
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Figure E.2: Location of ENSO sea-surface temperature measurements

Notes: ENSO indices defined as average sea surface temperature over a region minus the long-term mean sea surface
temperature for that region. Spatial definitions for standard ENSO indices: NINO4 (5◦S-5◦N, 160◦E-150◦W),
NINO3 (5◦S-5◦N, 150◦W-90◦W), NINO34 (5◦S-5◦N, 170◦W - 120◦W), and NINO12 (10◦S-0◦, 90◦W-80◦W).

Figure E.3: Monthly ENSO index for top 10 positive events
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Notes: Time evolution of monthly ENSO index 12 months before and after the 10 most positive ENSO events over
1961-2013. ENSO events occur during the winters of 1965, 1972, 1982, 1986, 1991, 1994, 1997, 2002, 2006, and 2009.

71



Figure E.4: Observed log cereal yields and temperature in 2013

-3
-2

-1
0

1
2

De
m

ea
ne

d 
lo

g 
ce

re
al

 y
ie

ld
 in

 2
01

3

-5 0 5 10 15 20 25 30
Temperature (C)

Notes: Observed country-level log cereal yields in 2013 with cross-sectional mean removed plotted against temper-
ature in 2013. From equation (10), observed log cereal yield is sum of the nonlinear temperature relationship k(Tit),
controls Ψ′Xit, and the residual term νit. Vertical line shows the predicted log yield maximizing temperature from
Figure 14.

Figure E.5: Differences in welfare projections due to change in spatial correlation and projected
yield changes
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F Appendix tables

Table F.1: Spatial correlation of economic determinants
Moran’s I

Income
log real GDP per capita† (Figure 1) .246

Determinants
log TFP† .214
log capital stock† .261
Human capital index† .346

Political stability index‡ .176
Rule of law index‡ .215
Corruption index‡ .194

Temperature§ .404
log distance to nearest coastline or river∗∗ .188
Soil suitability for agriculture∗∗ .175
Notes: Spatial correlation for income per capita and various deter-
minants. Moran’s I lies within [−1,+1], with 1 indicating perfect
positive spatial correlation and 0 indicating no spatial correlation.
† denotes cross-country variables in 2013 from Feenstra, Inklaar
and Timmer (2015). ‡ denotes cross-country variables in 2013
from World Bank’s World Governance Indicators. § denotes cross-
country variable in 2013 from Legates and Willmott (1990a). ∗∗

denotes time-invariant cross-country variables from Gallup, Sachs
and Mellinger (1999).

Table F.2: Statistical significance of first-stage coefficients

(1) (2) (3) (4) (5)

α′11 joint F-stat p-value 0.022 0.007 0.011 0.011 0.008
α′12 joint F-stat p-value 0.006 0.038 0.097 0.178 0.218
α′21 joint F-stat p-value 0.071 0.004 0.007 0.006 0.003
α′22 joint F-stat p-value 0.041 0.062 0.028 0.041 0.071

Number of temperature splines in f() 2 3 4 5 6
Observations 5452 5452 5452 5452 5452
Notes: Shows p-values from joint significance F-tests across the elements of each vector
of first-stage coefficients, α′11 and α′12 from equation (8), α′21 and α′22 from equation (9).
Columns 1-5 correspond to the IV specifications in columns 2-6 of Table 2.
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Table F.3: Alternative error structures
Outcome is log domestic share of expenditure

(1) (2) (3) (4)

lnAit (β0) 2.114 2.114 2.114 2.114
(0.604) (0.581) (0.830) (0.698)
[0.001] [0.001] [0.014] [0.004]

lnAit × It (β1) -4.144 -4.144 -4.144 -4.144
(1.834) (1.659) (2.157) (1.939)
[0.028] [0.016] [0.060] [0.037]

Clustering year cluster year cluster year cluster year cluster
and 20 year HAC and cntry cluster

Bekker adjustment No No No Yes
Observations 5452 5452 5452 5452
Notes: Estimates of β0 and β1 from equation (7). Column 1 reproduces benchmark estimates from
column 4, panel B of Table 2 with year-level clustered standard errors. Column 2 allows year-level
clustering and common serial correlation across countries within a 20-year window. Column 3 allows year
and country-level clustering. Column 4 allows year-level clustering with a Bekker (1994) adjustment.
Standard errors in parentheses; p-values in brackets.

Table F.4: Controlling for time-varying trade costs

Outcome is log domestic share of expenditure

(1) (2) (3) (4) (5) (6) (7)

lnAit (β0) 2.114 2.178 2.163 2.492 2.297 2.115 2.270
(0.604) (0.612) (0.593) (0.737) (0.641) (0.604) (0.796)
[0.001] [0.001] [0.001] [0.001] [0.001] [0.001] [0.006]

lnAit × It (β1) -4.144 -4.254 -4.189 -4.748 -4.227 -4.145 -4.281
(1.834) (1.865) (1.825) (2.095) (1.844) (1.833) (1.985)
[0.028] [0.027] [0.026] [0.028] [0.026] [0.028] [0.036]

ln oil price × average ln λii Yes
ln oil price × centrality Yes
Year FE × average ln λii Yes
Year FE × centrality Yes
Export restrictions Yes
Precipitation Yes
Cragg-Donald F-stat 5.174 5.249 5.077 4.875 4.042 5.163 3.932
Stock-Yogo crit. value: 10% max LIML size 3.580 3.580 3.580 3.580 3.580 3.580 3.580
Kleibergen-Paap F-stat 3.963 3.911 3.903 4.146 3.523 3.967 3.497
Observations 5452 5452 5452 5452 5452 5452 5452

Notes: Estimates of β0 and β1 from equation (7). Column 1 replicates benchmark model from column 4, panel
B, of Table 2. Column 2 (3) controls for the interaction of global log oil price and cross-sectional average log
domestic share of expenditure (output-weighted inverse distance averaged across all other countries). Column 4
(5) controls for the interaction of year fixed effects and cross-sectional average log domestic share of expenditure
(output-weighted inverse distance averaged across all other countries). Column 6 controls for introductions of export
restrictions. Column 7 controls for quadratic precipitation terms. Standard errors, clustered by year, in parentheses;
p-values in brackets.
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Table F.5: Sample splits
Outcome is log domestic share of expenditure

(1) (2) (3) (4)

lnAit (β0) 2.114 2.152 1.845 1.692
(0.604) (0.595) (2.807) (0.511)
[0.001] [0.001] [0.517] [0.003]

lnAit × It (β1) -4.144 -4.226 -4.639 -2.708
(1.834) (1.925) (12.564) (1.627)
[0.028] [0.033] [0.715] [0.108]

Include large producers? No Yes No No
Sample period 1961-2013 1961-2013 1961-1987 1988-2013
Cragg-Donald F-stat 5.174 5.020 1.628 3.810
Stock-Yogo crit. value: 10% max LIML size 3.580 3.580 3.580 3.580
Kleibergen-Paap F-stat 3.963 4.473 1.137 4.052
Anderson-Rubin weak-id robust joint p-value 0.000 0.000 0.000 0.000
Observations 5452 4952 2655 2793

Notes: Estimates of β0 and β1 from equation (7). Column 1 reproduces benchmark esti-
mates from column 4, panel B of Table 2. Column 2 excludes the following ten countries,
which together account for more than half of world cereal output in each year: China,
United States, India, Former Soviet Union, France, Indonesia, Canada, Brazil, Germany,
and Bangladesh. Column 3 restricts sample to 1961-1987. Column 4 restricts sample to
1988-2013. Standard errors, clustered by year, in parentheses; p-values in brackets.

Table F.6: Dynamic effects
Outcome is log domestic share of expenditure

(1) (2) (3) (4)

lnAit 2.217 1.326
(0.651) (0.634)
[0.001] [0.041]

lnAit × It -4.152 -3.233
(1.874) (1.590)
[0.031] [0.047]

lnAit+1 0.724
(0.503)
[0.156]

lnAit+1 × It+1 -0.830
(1.642)
[0.615]

lnAit−1 0.851
(0.526)
[0.112]

lnAit−1 × It−1 -2.039
(1.354)
[0.138]

2nd stage sample period 1962-2012 1962-2012 1962-2012 1961-2013
Include stored cereals? No No No Yes
Cragg-Donald F-stat 4.480 5.688 5.293 5.345
Stock-Yogo crit. value: 10% max LIML size 3.580 3.580 3.580 3.580
Kleibergen-Paap F-stat 3.632 2.592 3.532 3.622
Observations 5237 5236 5235 5191

Notes: Estimates of β0 and β1 from equation (7). Column 1 reproduces benchmark
model using log yields in year t instrumented by December ENSO in years t and t − 1
and local temperature in year t. Column 2 uses log yields in year t + 1, instrumented
by December ENSO conditions in years t+ 1 and t and local temperature in year t+ 1.
Column 3 uses log yields in year t − 1, instrumented by December ENSO conditions in
years t−1 and t−2 and local temperature in year t−1. Column 4 uses log yields in year
t to examine effects on a measure of domestic share of expenditure that includes stored
cereals. Sample period for 2nd stage equation is 1962-2012 for columns 1-3 and 1961-2013
for column 4. Standard errors clustered by year in parentheses; p-values in brackets.
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Table F.7: ENSO and local temperature definitions
Outcome is log domestic share of expenditure

(1) (2) (3) (4)

Panel A: Crop-area-weighted country temperature

lnAit (β0) 2.114 2.108 2.084 2.722
(0.604) (0.715) (0.706) (0.987)
[0.001] [0.005] [0.005] [0.008]

lnAit × It (β1) -4.144 -4.064 -4.465 -6.026
(1.834) (2.414) (2.406) (3.127)
[0.028] [0.098] [0.069] [0.059]

ENSO index 4 3 34 12
Cragg-Donald F-stat 5.174 5.013 5.195 3.781
Stock-Yogo crit. value: 10% max LIML size 3.580 3.580 3.580 3.580
Kleibergen-Paap F-stat 3.963 2.897 3.993 2.333
Observations 5452 5452 5452 5452

Panel B: Total-area-weighted country temperature

lnAit (β0) 1.632 1.722 1.562 1.871
(0.500) (0.626) (0.597) (0.729)
[0.002] [0.008] [0.012] [0.013]

lnAit × It (β1) -3.960 -4.125 -4.155 -4.517
(1.617) (2.155) (2.071) (2.331)
[0.018] [0.061] [0.050] [0.058]

ENSO index 4 3 34 12
Cragg-Donald F-stat 4.423 3.928 4.186 3.103
Stock-Yogo crit. value: 10% max LIML size 3.580 3.580 3.580 3.580
Kleibergen-Paap F-stat 3.490 2.653 3.344 1.957
Observations 5605 5605 5605 5605
Notes: Estimates of β0 and β1 from equation (7). Panel A uses crop-area-weighted country-level
temperatures. Panel B uses total-area-weighted country-level temperatures. Columns 1 to 4 use
NINO4, NINO3, NINO34, and NINO12 as ENSO index. Standard errors, clustered by year, in
parentheses; p-values in brackets.
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Table F.8: Using spatial correlation of temperature instead of ENSO
Outcome is log domestic share of expenditure

(1) (2) (3) (4) (5)

lnAit (β0) 2.486 2.540 1.918 1.647 1.686
(1.310) (1.182) (0.600) (0.618) (0.624)
[0.063] [0.036] [0.002] [0.010] [0.009]

lnAit × It (β1) -5.044 -5.135 -3.092 -2.348 -2.394
(4.173) (4.011) (1.884) (1.943) (2.021)
[0.232] [0.206] [0.107] [0.232] [0.241]

Number of temperature splines in f 2 3 4 5 6
Temperature Moran’s I polynomial order in g 1 1 1 1 1
Number of instruments 4 6 8 10 12
Cragg-Donald F-stat 6.407 5.267 6.161 5.428 4.846
Stock-Yogo crit. value: 10% max 2SLS bias 7.560 9.480 10.220 10.580 10.780
Stock-Yogo crit. value: 10% max 2SLS size 16.870 21.680 25.640 29.320 32.880
Stock-Yogo crit. value: 10% max LIML size 4.720 4.060 3.780 3.640 3.580
Kleibergen-Paap F-stat 2.813 2.217 2.145 2.389 2.061
BIC for first stage equations -30779.0 -30789.6 -30873.7 -30862.6 -30845.5
Observations 5452 5452 5452 5452 5452

Notes: LIML estimates of β0 and β1 from equation (7) with g(ENSOt + ENSOt−1) in first-stage
equations (8) and (9) replaced with the annual global spatial correlation of temperature, It(Tit). Columns
show estimates that vary by the number of temperature spline terms in f(). All models include country
fixed effects, year fixed effects, and country-specific linear trends as included instruments. Standard
errors, clustered by year, in parentheses; p-values in brackets.

Table F.9: Alternative domestic expenditure share constructions

Outcome is log domestic share of expenditure

(1) (2) (3) (4) (5) (6)

lnAit (β0) 2.114 1.365 1.825 1.568 1.606 1.867
(0.604) (0.397) (0.559) (0.432) (0.567) (0.536)
[0.001] [0.001] [0.002] [0.001] [0.007] [0.001]

lnAit × It (β1) -4.144 -3.068 -3.622 -2.835 -3.899 -3.520
(1.834) (1.423) (1.585) (1.337) (1.568) (1.549)
[0.028] [0.036] [0.026] [0.039] [0.016] [0.027]

Price data FAO FAO FAO FAO Comtrade FAO
Price imputation average export+ lowest highest average average

export producer export export export export
Drop outliers? No No No No No 1%
Cragg-Donald F-stat 5.174 8.049 5.174 5.174 3.982 5.259
Stock-Yogo crit. value: 10% max LIML size 3.580 3.580 3.580 3.580 3.580 3.580
Kleibergen-Paap F-stat 3.963 3.864 3.963 3.963 2.267 3.832
Observations 5452 2918 5452 5452 5696 5366
Notes: Estimates of β0 and β1 from equation (7). Column 1 reproduces benchmark estimates from column 4,
panel B of Table 2 with average export-volume-weighted cereal export unit value used for imputing cereal-level
prices in constructing domestic expenditure share. Column 2 uses cereal-level export unit values with missing
observations imputed using producer prices to construct domestic expenditure. Columns 3 and 4 use cereal-level
export unit values with missing observations imputed using the lowest and highest observed export unit value for
a given country and year, respectively. Column 5 replicates column 1 but constructs domestic expenditure share
using Comtrade bilateral trade data instead of FAO trade data. FAO trade data available for 1961-2013. Comtrade
data available for 1962-2013. Column 6 replicates column 1 but drops observations with outcome variable being in
the bottom and top 1% of distribution. Standard errors, clustered by year, in parentheses; p-values in brackets.
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Table F.10: Log cereal yield and local temperature
Outcome is log cereal yields

(1) (2) (3) (4) (5) (6)

Temperature 1st term 0.004 0.004 0.005 0.005 0.007 0.005
(0.009) (0.009) (0.010) (0.010) (0.011) (0.011)
[0.686] [0.677] [0.629] [0.631] [0.519] [0.623]

Temperature 2nd term -0.183 -0.165 -0.222 -0.203 -0.126 -0.100
(0.041) (0.040) (0.071) (0.071) (0.060) (0.059)
[0.000] [0.000] [0.003] [0.006] [0.041] [0.093]

Temperature 3rd term 0.650 0.599 0.418 0.393 0.020 -0.031
(0.160) (0.159) (0.196) (0.196) (0.212) (0.205)
[0.000] [0.000] [0.038] [0.050] [0.924] [0.882]

Temperature 4th term -1.162 -1.100 0.356 0.248 1.320 1.394
(0.533) (0.539) (0.649) (0.644) (0.674) (0.658)
[0.034] [0.047] [0.586] [0.702] [0.056] [0.039]

Temperature 5th term -2.204 -1.801 -2.895 -3.370
(1.775) (1.760) (1.880) (1.864)
[0.220] [0.311] [0.130] [0.076]

Temperature 6th term 1.830 3.213
(3.814) (3.791)
[0.633] [0.401]

Precipitation 0.003 0.003 0.003
(0.001) (0.001) (0.001)
[0.000] [0.000] [0.000]

Precipitation squared -0.000 -0.000 -0.000
(0.000) (0.000) (0.000)
[0.000] [0.000] [0.000]

Number of temperature splines 4 4 5 5 6 6
Precipitation No Yes No Yes No Yes
Temp. joint p-value 0.0004 0.0014 0.0009 0.0030 0.0015 0.0049
Optimal temp. 8.81 8.91 8.87 8.94 7.80 7.70
Observations 7226 7226 7226 7226 7226 7226
Notes: Estimates of cubic spline terms for h() in equation (10) during 1961-2013. The number of knots
placed along the temperature support according to Harrell (2001) varies across columns. Odd (even)
numbered columns exclude (include) quadratic precipitation terms. P-value from a joint significance test
of temperature terms shown. Standard errors, clustered by year, in parentheses; p-values in brackets.
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